871 resultados para Exponential e logarithmic quaternion functions
Resumo:
This article presents a new approach to minimize the losses in electrical power systems. This approach considers the application of the primal-dual logarithmic barrier method to voltage magnitude and tap-changing transformer variables, and the other inequality constraints are treated by augmented Lagrangian method. The Lagrangian function aggregates all the constraints. The first-order necessary conditions are reached by Newton's method, and by updating the dual variables and penalty factors. Test results are presented to show the good performance of this approach.
Resumo:
We prove the equivalence of many-gluon Green's functions in the Duffin-Kemmer-Petieu and Klein-Gordon-Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.
Resumo:
This paper presents a new approach to solve the Optimal Power Flow problem. This approach considers the application of logarithmic barrier method to voltage magnitude and tap-changing transformer variables and the other constraints are treated by augmented Lagrangian method. Numerical test results are presented, showing the effective performance of this algorithm. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We show that all Green's functions of the Schwinger and axial models can be obtained one from the other. In particular, we show that the two models have the same chiral anomaly. Finally it is demonstrated that the Schwinger model can keep gauge invariance for an arbitrary mass, dispensing with an additional gauge group integration.
Resumo:
Motivated by the recent solution of Karlin's conjecture, properties of functions in the Laguerre-Polya class are investigated. The main result of this paper establishes new moment inequalities fur a class of entire functions represented by Fourier transforms. The paper concludes with several conjectures and open problems involving the Laguerre-Polya class and the Riemann xi -function.
Resumo:
Here we address the problem of bosonizing massive fermions without making expansions in the fermion masses in both massive QED(2) and QED(3) with N fermion flavors including also a Thirring coupling. We start from two-point correlators involving the U(1) fermionic current and the gauge field. From the tensor structure of those correlators we prove that the U(1) current must be identically conserved (topological) in the corresponding bosonized theory in both D=2 and D=3 dimensions. We find an effective generating functional in terms of bosonic fields which reproduces these two-point correlators and from that we obtain a map of the Lagrangian density (ψ) over bar (r)(ipartial derivative-m)psi(r) into a bosonic one in both dimensions. This map is nonlocal but it is independent of the electromagnetic and Thirring couplings, at least in the quadratic approximation for the fermionic determinant.
Resumo:
The present paper quantifies and develops the kinetic aspects involved in the mechanism of interplay between electron and ions presented elsewhere(1) for KhFek[Fe(CN)(6)](l)center dot mH(2)O (Prussian Blue) host materials. Accordingly, there are three different electrochemical processes involved in the PB host materials: H3O+, K+, and H+ insertion/extraction mechanisms which here were fully kinetically studied by means of the use of combined electronic and mass transfer functions as a tool to separate all the processes. The use of combined electronic and mass transfer functions was very important to validate and confirm the proposed mechanism. This mechanism allows the electrochemical and chemical processes involved in the KhFek[Fe(CN)(6)](l)center dot mH(2)O host and Prussian Blue derivatives to be understood. In addition, a formalism was also developed to consider superficial oxygen reduction. From the analysis of the kinetic processes involved in the model, it was possible to demonstrate that the processes associated with K+ and H+ exchanges are reversible whereas the H3O+ insertion process was shown not to present a reversible pattern. This irreversible pattern is very peculiar and was shown to be related to the catalytic proton reduction reaction. Furthermore, from the model, it was possible to calculate the number density of available sites for each intercalation/deintercalation processes and infer that they are very similar for K+ and H+. Hence, the high prominence of the K+ exchange observed in the voltammetric responses has a kinetic origin and is not related to the amount of sites available for intercalation/deintercalation of the ions.
Resumo:
Starting from general properties of a spin-2 field, we construct helicity wave functions in the framework of the Weyl-van der Waerden spinor formalism. We discuss here the cases of massless and massive spin-2 particles.
Resumo:
The kinetics of the buildup and decay of photoinduced birefringence was examined in a series of host-guest systems: azobenzene-containing crown ethers, differing in the size of the crowns, dissolved in a poly (methyl methacrylate) matrix. In all samples, the kinetics of the buildup of the birefringence was reasonably described by a sum of two exponential functions, the time constants being inversely proportional to the intensity of the pumping light and the magnitudes of the signals at the saturation level depending on the pumping light intensity and sample thickness. The dark decays were best described by the stretched exponential function, with the characteristic parameters (time constant and stretch coefficient) being practically independent of the type of crown ether. The time constants of the signal decay were orders of magnitude shorter than the respective constants of the dark isomerization of the azo crown ethers, thus indicating that the process controlling the decay was a relaxation of the polymer matrix and/or a rearrangement of the flexible parts of the crowns. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Selective chemical sympathectomy of the internal genital organs of prepubertal to mature male Wistar rats was performed by chronic treatment with low doses of guanethidine. Sympathetic denervation caused an increase in intratesticular progesterone levels in prepubertal and early pubertal rats in addition to a decrease in androstenedione and testosterone levels in prepubertal animals, thus indicating a decrease in the conversion of progesterone into androgen, probably by blocking the steroidogenic enzymatic pathway at the 17 alpha-hydroxylase/17,20 desmolase level. A lower degree of testicular maturation, probably related to reduced androgen activity, was observed in prepubertal and early pubertal sympathectomized rats. Concentration of spermatozoa, on the other hand, was increased in the enlarged cauda epididymidis of late pubertal and mature denervated animals. This result is discussed in terms of the impairment of epididymal mechanisms of seminal emission, fluid resorption and spermatozoal disposal.
Resumo:
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Resumo:
The purpose of this research was to verify the effect of age on the exponent of the power function in Perceptive, Memory, and Inference experimental conditions. In the Memory condition the intervals of 2 min., 8, 24, and 48 hr. and 1 wk. were used between acquisition of information and remembering. For each experimental condition the ages of observers ranged between 17 and 35 years (Group I), 40-55 years (Group II), and 60-77 years (Group III), and education ranged from high school to graduate school. The observers estimated the areas of the Brazilian states using the psychophysical method of magnitude estimation. No significant differences were obtained for Groups I, II, and III for each experimental condition, except in the Memory Condition with the 24-hr. interval. Analysis for experimental conditions and ages showed a significant difference between the Perceptive Condition and each of the others, but no difference between the Inference and Memory Conditions. These results indicated that in the remembering processes there is no loss of information as a function of age. From the small variability in the power function exponents for the three ages, we may assume that age could be related to amount of education of the observers, which suggests study is important.
Resumo:
Searching for an understanding of how the brain supports conscious processes, cognitive scientists have proposed two main classes of theory: Global Workspace and Information Integration theories. These theories seem to be complementary, but both still lack grounding in terms of brain mechanisms responsible for the production of coherent and unitary conscious states. Here we propose following James Robertson's "Astrocentric Hypothesis" - that conscious processing is based on analog computing in astrocytes. The "hardware" for these computations is calcium waves mediated by adenosine triphosphate signaling. Besides presenting our version of this hypothesis, we also review recent findings on astrocyte morphology that lend support to their functioning as Local Hubs (composed of protoplasmic astrocytes) that integrate synaptic activity, and as a Master Hub (composed, in the human brain, by a combination of interlaminar, fibrous, polarized and varicose projection astrocytes) that integrates whole-brain activity.