775 resultados para Expoentes de Lyapunov


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of designing linear functional observers for discrete time-delay systems with unknown-but-bounded disturbances in both the plant and the output is considered for the first time in this paper. A novel approach to design a minimum-order observer is proposed to guarantee that the observer error is ϵ-convergent, which means that the estimate converges robustly within an ϵ-bound of the true state. Conditions for the existence of this observer are first derived. Then, by utilising an extended Lyapunov-Krasovskii functional and the free-weighting matrix technique, a sufficient condition for ϵ-convergence of the observer error system is given. This condition is presented in terms of linear matrix inequalities with two parameters needed to be tuned, so that it can be efficiently solved by incorporating a two-dimensional search method into convex optimisation algorithms to obtain the smallest possible value for ϵ. Three numerical examples, including the well-known single-link flexible joint robotic system, are given to illustrate the feasibility and effectiveness of our results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new design method of H∞ filtering for nonlinear large-scale systems with interconnected time-varying delays. The interaction terms with interval time-varying delays are bounded by nonlinear bounding functions including all states of the subsystems. A stable linear filter is designed to ensure that the filtering error system is exponentially stable with a prescribed convergence rate. By constructing a set of improved Lyapunov functions and using generalized Jensen inequality, new delay-dependent conditions for designing H∞ filter are obtained in terms of linear matrix inequalities. Finally, an example is provided to illustrate the effectiveness of the proposed result.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inertial measurement units (IMU) provide a convenient tool for gait stability assessment. However, it is unclear how various gait characteristics relate to each other and whether gait characteristics can be obtained from resultant acceleration. Therefore, step duration variability was measured in treadmill walking from 39 young ambulant volunteers (age 24.2 [± 2.5] y; height 1.79 [± 0.09] m; mass 71.6 [± 12.0] kg) using motion capture. Accelerations and gyrations were simultaneously recorded with an IMU. Harmonic ratio, maximum Lyapunov exponents, and multiscale sample entropy (MSE) were calculated. Step duration variability was positively associated with MSE with coarseness levels = 3-6 (r = -.33 to -.42, P ≤ .045). Harmonic ratio and MSE with all coarseness levels were negatively associated (r = -.45 to -.57, P ≤ .004). The MSE with coarseness level = 2 was negatively associated with short-term maximum Lyapunov exponents (r = -.32, P = .047). The agreement between resultant and vertical acceleration derived gait characteristics was excellent (ICC = 0.97-0.99). In conclusion, MSE with varying coarseness levels was associated with the other gait characteristics evaluated in the study. Resultant and vertical acceleration derived results had excellent agreement, which suggests that resultant acceleration is a viable alternative to considering the acceleration dimensions independently.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Functional observer design for Multi-Input Multi-Output (MIMO) Linear Time-Invariant (LTI) systems with multiple mixed time delays in the states of the system is addressed. Two structures for the design of a minimum-order observer are considered: 1 - delay-dependent, and 2 - internal-delay independent. The parameters of the delay-dependent observer are designed using the Lyapunov Krasovskii approach. The delay-dependent exponential stability of the observer for a specified convergence rate and delay values is guaranteed upon the feasibility of a set of Linear Matrix Inequalities (LMIs) together with a rank condition. Using the descriptor transformation, a modified Jensen's inequality, and improved Park's inequality, the results can be less conservative than the available functional observer design methods that address LTI systems with single state delay. Furthermore, the necessary and sufficient conditions of the asymptotic stability of the internal-delay independent observer are obtained, which are shown to be independent of delay. Two illustrative numerical examples and simulation studies confirm the validity and highlight the performance of the proposed theoretical achievements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper proposes a new approach to design a robust adaptive backstepping excitation controller for multimachine power systems in order to reject external disturbances. The parameters which significantly affect the stability of power systems (also called stability sensitive parameters) are considered as unknown and the external disturbances are incorporated into the power system model. The proposed excitation controller is designed in such a way that it is adaptive to the unknown parameters and robust to external disturbances. The stability sensitive parameters are estimated through the adaptation laws and the convergences of these adaptation laws are obtained through the negative semi-definiteness of control Lyapunov functions (CLFs). The proposed controller not only provides robustness property against external disturbances but also overcomes the over-parameterization problem of stability sensitive parameters which usually appears in some conventional adaptive methods. Finally, the performance of the proposed controller is tested on a two-area four machine 11-bus power system by considering external disturbances under different scenarios and is compared to that of an existing nonlinear adaptive backstepping controller. Simulation results illustrate the robustness of the proposed controller over an existing one in terms of rejecting external disturbances.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we address the problem of finding outer bound of forward reachable sets and inter-bound of backward reachable sets of switched systems with an interval time-varying delay and bounded disturbances. By constructing a flexible Lyapunov–Krasovskii functional combining with some recent refined integral-based inequalities, some sufficient conditions are derived for the existence of (1) the smallest possible outer bound of forwards reachable sets; and (2) the largest possible inter-bound of backward reachable sets. These conditions are delay dependent and in the form of linear matrix inequalities, which therefore can be efficiently solved by using existing convex algorithms. A constructive geometric design of switching laws is also presented. Two numerical examples with simulation results are provided to demonstrate the effectiveness of our results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider a class of time-delay singular systems with Lipschitz non-linearities. A method of designing full-order observers for the systems is presented which can handle non-linearities with large-Lipschitz constants. The Lipschitz conditions are reformulated into linear parameter varying systems, then the Lyapunov–Krasovskii approach and the convexity principle are applied to study stability of the new systems. Furthermore, the observers design does not require the assumption of regularity for singular systems. In case the systems are non-singular, a reduced-order observers design is proposed instead. In both cases, synthesis conditions for the observers designs are derived in terms of linear matrix inequalities which can be solved efficiently by numerical methods. The efficiency of the obtained results is illustrated by two numerical examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the problem of distributed functional state observer design for a class of large-scale interconnected systems in the presence of heterogeneous time-varying delays in the interconnections and the local state vectors is considered. The resulting observer scheme is suitable for strongly coupled subsystems with multiple time-varying delays, and is shown to give better results for systems with very strong interconnections while only some mild existence conditions are imposed. A set of existence conditions are derived along with a computationally simple observer constructive procedure. Based on the Lyapunov-Krasovskii functional method (LKF) in the framework of linear matrix inequalities (LMIs), delay-dependent conditions are derived to obtain the observer parameters ensuring the exponential convergence of the observer error dynamics. The effectiveness of the obtained results is illustrated and tested through a numerical example of a three-area interconnected system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the problem of passivity analysis of neural networks with an interval time-varying delay. Unlike existing results in the literature, the time-delay considered in this paper is subjected to interval time-varying without any restriction on the rate of change. Based on novel refined Jensen inequalities and by constructing an improved Lyapunov-Krasovskii functional (LKF), which fully utilizes information of the neuron activation functions, new delay-dependent conditions that ensure the passivity of the network are derived in terms of tractable linear matrix inequalities (LMIs) which can be effectively solved by various computational tools. The effectiveness and improvement over existing results of the proposed method in this paper are illustrated through numerical examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the model of memristor-based complex-valued neural networks (MCVNNs) with time-varying delays is established and the problem of passivity analysis for MCVNNs is considered and extensively investigated. The analysis in this paper employs results from the theory of differential equations with discontinuous right-hand side as introduced by Filippov. By employing the appropriate Lyapunov–Krasovskii functional, differential inclusion theory and linear matrix inequality (LMI) approach, some new sufficient conditions for the passivity of the given MCVNNs are obtained in terms of both complex-valued and real-value LMIs, which can be easily solved by using standard numerical algorithms. Numerical examples are provided to illustrate the effectiveness of our theoretical results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with the problem of stochastic stability analysis of discrete-time two-dimensional (2-D) Markovian jump systems (MJSs) described by the Roesser model with interval time-varying delays. The transition probabilities of the jumping process/Markov chain are assumed to be uncertain, that is, they are not exactly known but can be estimated. A Lyapunov-like scheme is first extended to 2-D MJSs with delays. Based on some novel 2-D summation inequalities proposed in this paper, delay-dependent stochastic stability conditions are derived in terms of linear matrix inequalities (LMIs) which can be computationally solved by various convex optimization algorithms. Finally, two numerical examples are given to illustrate the effectiveness of the obtained results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Designing delay-dependent functional observers for LTI systems with multiple known time-varying state delays and unknown time-varying input delays is studied. The input delays are arbitrary, but the state delays should be upper-bounded. In addition, two scenarios of slow-varying and fast-varying state delays are investigated. The results of the paper can also be considered as one of the first contributions considering unknown-input functional observer design for linear systems with multiple time-varying state delays. Based on the Lyapunov Krasovskii approach, delay-dependent sufficient conditions of the exponential stability of the observer in each scenario are established in terms of linear matrix inequalities. Because of using effective techniques, such as the descriptor transformation and an advanced weighted integral inequality, the proposed stability criteria can result in larger stability regions compared with the other papers that study functional observers for time-varying delay systems. Furthermore, to help with the design procedure, a genetic algorithm-based scheme is proposed to adjust a weighting matrix in the established linear matrix inequalities. Two numerical examples illustrate the design procedure and demonstrate the efficacy of the proposed observer in each scenario.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study considers the problem of stability analysis of discrete-time two-dimensional (2D) Roesser systems with interval time-varying delays. New 2D finite-sum inequalities, which provide a tighter lower bound than the existing ones based on 2D Jensen-type inequalities, are first developed. Based on an improved Lyapunov-Krasovskii functional, the newly derived inequalities are then utilised to establish delay-range-dependent linear matrix inequality-based stability conditions for a class of discrete time-delay 2D systems. The effectiveness of the obtained results is demonstrated by numerical examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaotic synchronization of two time-delay coupled Hindmarsh–Rose neurons via nonlinear control is investigated in this paper. Both the intrinsic slow current delay in a single Hindmarsh–Rose neuron and the coupling delay between the two neurons are considered. When there is no control, chaotic synchronization occurs for a limited range of the coupling strength and the time-delay values. To obtain complete chaotic synchronization irrespective of the time-delay or the coupling strength, we propose two nonlinear control schemes. The first uses adaptive control for chaotic synchronization of two electrically coupled delayed Hindmarsh–Rose neuron models. The second derives the sufficient conditions to ensure a complete synchronization between master and slave models through appropriate Lyapunov–Krasovskii functionals and the linear matrix inequality technique. Numerical simulations are carried out to show the effectiveness of the proposed methods.