894 resultados para Eucalyptus canker
Resumo:
Two field trial were conducted in Eucalyptus grandis W. Hill ex Maiden x Eucalyptus urophylla S.T. Blake crops at Três Lagoas, Mato Grosso do Sul State and Brotas, São Paulo State, Brazil, to evaluate the effects of weed control in strip of different width on the Eucalyptus plant growth. The experiments consisted of two groups treatments: group 1 - with constant width control strips being kept during the first 12 months, i.e., at 0, 25, 50, 100, 125 and 150cm on each side of the Eucalyptus row and, group 2: with increasing width control strips being adopted along the experimental period, i.e., at 25 to 150, 25-50-150, 50 to 150, 50-125-150, 100-125-150, 100 tot 150 and 125 to 150 cm on each side of the Eucalyptus row during the first 12 months. At 49 moths after planting it was verified that the Eucalyptus plants that had grown both in the constant and increasing width control strips, equal to or higher than 100 and 50 cm, respectively, showed higher steam diameter, plant height, volume and annual increment average of wood. These results led to the conclusion that the minimum control strip width should be 100 cm on each side of the Eucalyptus row in order to keep the crop free of weed interference.
Resumo:
The objective of this study was to evaluate the feasibility of the biosolids used as substrate component for seedlings production of Eucalyptus. This way, different proportions of biosolid/carbonized rice (80/20, 70/30, 60/40, 50/05 and 40/60) were tested as substrates in mixture, which were compared to the common substrate used by forest nursery (Multiplant®), as control. The experiment was established with Eucalyptus grandis where growth seedlings-related parameters were assessed: shoot height, collar diameter, accumulation of dry matter on the shoot and root, chemical analysis of the vegetal tissue of aerial part and root, foliar area and chlorophyll content. The results revealed that Eucalypts seedlings developed in substrate with 50% biosolid were similar to the control in relation to the evaluated parameters, concluding that the use of biosolids for seedlings production is quite promising.
Resumo:
Termites have become an important pest of Eucalyptus and Pinus reforestations, sugarcane and other cultures. An alternative for the control of this pest would be the use of attractive traps that take in account the social behavior of these insects. Diverse factors are important for the insects in the localization of the habitat and the choice of the food and specific odors can facilitate this. Studies referring to Heterotermes tenuis (Isoptera: Rhinotermitidae) are scarce. The objective of this work was to analyze the tergal cuticular extract of H. tenuis and determine the selectivity and sensitivity of its antennae to the components of this extract by electroantennography (EAG). The composition of the cuticular extract was determined by GC-MS analysis. The hydrocarbons found were restricted to linear alkanes, being most abundant C24 to C27 that comprises ca. 65% of the total. Olefins were not detected. EAG and behavioral test responses to the cuticular hydrocarbons were greater and significantly different from the control and the high selectivity of the antennae to the extract indicates its potential as chemical messenger. Cuticular hydrocarbons mixture is species-specific and can be used to identify a given taxon without the diagnostic castes, soldiers or imagoes. Difference in the composition appears to relate with the type of habitat of specie.
Resumo:
The subterranean termite Heterotermes tenuis (Isoptera: Rhinotermitidae) is a pest of great importance for the Brazilian economy as it causes serious damages in commercial reforestations of Eucalyptus spp. and sugarcane cultures. (3Z,6Z,8E)-Dodecatrien-1-ol has been identified as a pheromone of some species of subterranean termites. The objective of this research was to synthesize (3Z,6Z,8E)-dodecatrien-1-ol and determine by electroantennographic (EAG) bioassays the selectivity and sensitivity of H. tenius antennae to its whole worker extract and to the synthetic triene alcohol.
Resumo:
Chloroform and eucalyptol are widely used in clinical dentistry as gutta-percha solvents. However, these compounds may represent a hazard to human health, especially by causing injury to genetic apparatus and/or inducing cellular death. In this study, the genotoxic and cytotoxic potentials associated with exposure to chloroform and eucalyptol were assessed on mouse lymphoma cells in vitro by the single cell gel (comet) assay and trypan blue exclusion test, respectively. Both gutta-percha solvents proved to be cytotoxic at the same levels in concentrations of 2.5, 5 and 10 μL/mL (p<0.05). On the other hand, neither of the solvents induced DNA breakage. Taken together, these results suggest that although both tested compounds (chloroform and eucalyptol) are strong cytotoxicants, it seems that they are not likely to increase the level of DNA damage on mammalian cells.
Resumo:
The degraded soil shows, in general, poor biological activity, considering its physical characteristics, low fertility and organic matter, mainly due to removal or degradation of its superficial layer. The sewage sludge, due to its high content of easily decomposed organic matter can be an alternate source of organic residues and combined to its high content of the principal nutrients for the plants can be an important factor to promote biological activities in degraded soil. In order to study the actions of the sewage sludge in the recovery of a degraded Latosol, the carbon in the microbial biomass (C mic), the carbon released CO2 (C-CO2) and the relation between microbial and organic carbon (Cmic/Corg) were used as indicators of the effects. To do so, two doses (30 and 60 Mg ha-1) of sewer slime applied in topdressing and incorporated together with a mineral fertilizer treatment, using the eucalyptus as a test crop. A completely randomized design with 4 treatments and 4 repetitions was used. The sewage sludge promoted increase of liberated C-CO2 and the C mic, which constitute the adequate quality indicators for monitoring the soil recovery.
Resumo:
The goal of this research was to determine the density distribution in medium density fiberboard (MDF), manufactured with polyurethane derived from castor oil using, ultrasonic wave technique. The equipment used in this test is Steinkamp BP7 with plan and exponential transducers, both with 45 kHz frequencies, located in several zones on the plate in order to determine wave ultrasonic velocity. The Pinus caribaea and Eucalyptus grandis fiberboard were manufactured in the quality control and products development laboratory of Duratex with 500 mm long, 500 mm large, 8 and 15 mm of thickness. Three MDF for each fiber specimen and thickness were fabricated, totalizing twelve plates tested. The MDF were produced with 5% polyurethane addition, in temperature of 160°C, tension press of 53 bars and addition of moisture content of 12%. For determination of fiberboard density, samples were extracted from the same zones where the wave ultrasonic velocity was determined. In this case, DAX-Ray equipment was used. Statistical analysis shows good agreement with wave ultrasonic velocity and the density profile, validating the application of non-destructive technique in order to determine the density profile of MDF's.
Resumo:
Biopulping is a technology which application can be advantageous to mechanical or chemical pulping. It presents benefits such as the creation of stronger pulp, as well as energy or chemicals savings. This paper gives an overview of the recent efforts to develop biopulping processes in Brazil as well as provides critical information on biopulping development worldwide. Eucalyptus grandis wood chips have been biotreated by Ceriporiopsis subvermispora in a 50-ton biopulping pilot-plant and used to produce TMP and CTMP pulps on a mill scale, Up to 18% and 27% energy savings have been observed for producing 450-470 CSFreeness TMP and CTMP pulps. Despite darker bio-TMP pulps are produced, one-stage bleaching with 5% H2O2 was sufficient to improve brightness values to 70% and 72% for bio-TMP and control pulps, respectively. Understanding biopulping mechanisms is also relevant because more resistant and competitive fungal species could be selected with basis on a function-directed screen-ing project. As far as the chemical changes induced by the fungus in wood are concerned, recent efforts have pointed out for two different types of wood transformations. One of them involves intense lignin depolymerization in short biotreatment periods, while the other indicates that esterification reactions of oxalate secreted by the Jungas on the polysaccharides chains increase the water saturation point of the fibers. Both transformations are expected to affect the fiber-fiber bonding and, consequently, the physical resistance of wood.
Resumo:
The adventitious rooting process of in vitro cultured plantlets is a technique that has been employed for the vegetative propagation of a significant number of native and exotic species. Many factors are associated with the rooting stage influencing positive and/or negatively the establishment of micropropagation protocols. The objective of this work was a literature review of the main inherent factors concerning in vitro rooting process including the correlation among others the endogenous and exogenous auxins levels, juvenility, genotype, mineral nutrition, culture medium conditions, addition of growth regulators and other substances as phenolic compounds and active coal besides growth environmental conditions of in vitro cultures. Although the complete elucidation of all processes involved with rooting of in vitro cultured plants has not been achieved so far, a comprehensive study of the main factors that interfere on rooting is fundamental for the establishment of new researches that might contribute for the rooting of economically important plants.
Resumo:
This paper evaluated the critical level, responsivity and boron use effciency on growth and the biomass production in six Eucalyptus grandis x Eucalyptus urophylla clones (Ca, Cb, Cc, Cd, Ce and Cf). An experiment was carried out in pots containing ground silicon, under greenhouse conditions using four boron rates per solution (0; 0.135; 0.27; 0.54 mg L -1 of B). The treatments were combined in a randomized block experimental design in a 4 × 6 factorial scheme with three replications. Plant height, stem diameter, dry matter production in the shoots of the plant and boron use effciency in the leaves, stem and total dry matter at the 8th month of age were evaluated. Due to boron fertilization, growth and shoot biomass were observed in the Eucalyptus plants after 240 days of being planted in pots. The increases in growth and biomass were 35 to 54% and 21 to 64%, respectively. The boron rates that promoted major growth of the plants were 0.33 to 0.44 mg L -1 of B and in this range the most effcient clone for dry matter production of leaves was Cf and the least effcient one to stem biomass production and the shoot biomass was Cd, no signifcant differences among other clones were observed. The critical level of boron in solution was 0.09 to 0.24 mg L -1 of B in the growth of the plants.
Resumo:
Casing layer is one of the most important components of Agaricus spp. production and it directly affects mushroom productivity, size and mass. The aim of this study was to evaluate potential raw materials as a casing layer and their effect on Agaricus brasiliensis productivity. Raw materials from Brazil with potential use were selected and characterized, and the most promising ones were tested as casing layers for mushroom yield. Evaluated raw materials included lime schist, vermiculite, eucalyptus sawdust, sand, São Paulo peat, Santa Catarina peat, subsoil and charcoal. Particle size, porosity and water absorption in relation to mushroom yield for casing layers were determined. Lime schist, an alternate casing layer to peat, is presented and the effects of the casing layer on the mushroom yield are discussed. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate the effectiveness of 3 solvents (eucalyptol, orange oil, and xylol) on 2 types of gutta-percha (conventional and thermoplastic) and Resilon. Specimens (10 mm diameter × 1 mm thick; n=7 per condition) were prepared and maintained at 37°C for 48 h. Each specimen was weighed on a precision scale every 24 h until its mass was stable, at which time the initial mass was determined. Specimens (n=7) were then immersed in the solvent solutions and, after 48 h at 37°C, they were reweighed at 24- h intervals, until stabilization (final mass). The difference between the final and the initial mass determined the solvent capacity of each solvent. Data were subjected to analysis of variance and Tukey's test at 5% significance level. The results demonstrated that xylol was the most effective, especially on conventional gutta-percha and Resilon (p<0.05). Eucalyptol and orange oil were more effective on thermoplastic gutta-percha than the other materials (p<0.05). It was concluded that all evaluated substances presented solvent action, but xylol was the most effective on both gutta-percha or Resilon.
Resumo:
The aim of this study was to evaluate Eucaliptus grandis genotypes (Clones 105 and 433) in relation to drought tolerance, through growth plant analysis. Black PVC pots with 10 liter volume were used for cultivate plants in polyethilene greenhouse oriented east/west. Completely randonmized design with four treatments was used: two clones and two minimum soil water potentials (- 0.03 and -1,5 MPa) and sixteen replicates. Pots were weighed daily in order to evaluate water content and characteristic soli water curve was determined. Plant development was obtained each 15 days from planting until 60 days through total dry matter (DM), leaf area index (LAI), leaf area ratio (LAR), net assimilative ratio (NAR), specific leaf area (SLA), relative growth ratio (RGR) and absolute growth ratio (AGR). Results showed that clone 105 presented less sensibility to water deficit, which qualify it as genetic material for use under dry soil conditons. On the other hand, both clones had similar behavior with no water restrictions.
Resumo:
The aim of this study was to investigate the genetic variation, the genotype × soil interaction and the selection among and within Corymbia citriodora progenies in three different kinds of soils (Red Latossol, Quartz Sand and Purple Latossol), which occur in the Luiz Antônio Experimental Station, São Paulo State, Brazil. The progeny test was established 1983, using 56 open-pollinated families of C. citriodora. Twenty fve years after planting the following traits were measured: height, diameter at breast height (Dbh), stem form and survival. Best growth occurred in Purple Latossol. Significant differences among progenies were detected for most traits in all sites, suggesting the possibility of improvement by selection. In the analysis with sites, Significant differences among locals, progenies and genotypes × soil interaction were detected, confiming that the tested material has sufficient genetic variation to be explored by selection in all sites. The analysis of genotype × soil interaction indicates that growth traits present single interaction and the same progenies can be selected in each site. On the order hand, genotype × soil interaction for stem form and survival was complex; and specifc progenies need to be selected for each kind of soil. The population, due to its high genetic variation and strong genetic control of traits, permits to obtain considerable genetic gains by selection among and within progenies.
Resumo:
Among the several variables that influence timber harvesting is the slope, which influences the productivity of forest machines. In this experiment the harvester was evaluated technically and economically while cutting and processing eucalyptus activity on different slope classes. The technical analysis included a study of time and movements by the method of continuous time; productivity was determined by the volume in cubic meters of wood processing. The economic analysis included the parameters of operational cost, production cost and energy consumption. The analysis of the data showed that productivity decreased according to the increase of the percent slope inclination, resulting in an effective work hour productivity increase from 18.72 to 39.71 m 3sc, with a mean of operating cost of US$ 78.78 per work hour.