956 resultados para Estuarine molluscs
Resumo:
Field and laboratory studies were conducted from 1998 - 2005 to examine the relationship between nutritional status and mycobacteriosis in Chesapeake Bay striped bass (Morone saxatilis). A review of DNA from archived tissue blocks indicated that the disease has been present since at least 1984. Field surveys and feeding trials were conducted from 1998-1999 to determine the nutritional condition of striped bass and the association with disease state. Proximate composition revealed elevated moisture (~ 80%) and low storage lipids (< 0.5% ww), characteristic of a poorly nourished population. These findings were not consistent with data collected in 1990-1991, or with experimentally fed fish. Mycobacteriosis explained little of the variance in chemical composition (p > 0.2); however elevated moisture and low lipid concentration were associated with fish with ulcerative lesions (p < 0.05). This suggests that age 3 and 4 striped bass were in poor nutritional health in 1998-1999, which may be independent from the disease process. Challenge studies were performed to address the hypothesis that disease progression and severity may be altered by nutritional status of the host. Intraperitoneal inoculation of 104 CFU M. marinum resulted in high mortality, elevated bacterial density, and poor granuloma formation in low ration (0.15% bw/d) groups while adequately fed fish (1% bw/d) followed a normal course of granulomatous inflammation with low mortality to a steady, equilibrium state. Further, we demonstrated that an active inflammatory state could be reactivated in fish through reductions in total diet. The energetic demand of mycobacteriosis, was insignificant in comparison to sham inoculated controls in adequately fed fish (p > 0.05). Declines in total body energy were only apparent during active, inflammatory stages of disease. Overall, these findings suggest that: 1) mycobacteriosis is not a new disease of Chesapeake Bay striped bass, 2) the disease has little energetic demand in the normal, chronic progression, and 3) poor nutritional health can greatly enhance the progression and severity, and reactivation of disease. The implications of this research are that management strategies focused on enhancing the nutritional state of striped bass could potentially alter the disease dynamics in Chesapeake Bay.
Resumo:
Stocks of the eastern oyster, Crassostrea virginica, have been declining in Chesapeake Bay since the late 19th century, and current strategies involve restoring culture of Crassostrea virginica on-bottom and in devices suspended within the water column. Sub-tidal suspension culture of Crassostrea virginica in Chesapeake Bay occurs mostly in sheltered inlets and tidal creeks and, thereby, has the potential to influence shallow water biogeochemical processes. To assess the influence of Crassostrea virginica biodeposits and benthic microalgae on sediment nitrogen and phosphorus exchange, field studies with Crassostrea virginica held in aquaculture floats and laboratory experiments were conducted. Enhanced organic nitrogen deposition from Crassostrea virginica biodeposits led to gradual increases in surface sediment nitrogen and pore water ammonium concentrations; however, modifications to pore water concentrations were not always expressed at the sediment-water interface. Benthic microalgae often modulated the influence of biodeposits on sediment nitrogen exchange but, as observed in laboratory experiments, the supply of nitrogen from Crassostrea virginica biodeposits may exceed their biological demand. Organic carbon from biodeposits had varying influences on aerobic respiration but consistently stimulated anaerobic metabolism. Shifts in net phosphorus exchange were driven by this anaerobic remineralization and concentrations of iron and manganese oxy(hydr)oxides, with transitions in fluxes coinciding with changes in benthic photosynthesis and oxidation of surface sediments. Manganese and iron oxy(hydr)oxides from biodeposits supported incorporation of added phosphorus and prevented exchange at the sediment-water interface in the absence of iron-sulfide mineral formation. Differences in the response of shallow water sediments to Crassostrea virginica biodeposits were due to the quality and quantity of biodeposits supplied, as well as the spatial and temporal variability within these sediments. Initial conditions and corresponding reference sediments illustrated the potential for sediment biogeochemistry and nutrient exchange from tidal creek sediments to vary spatially and temporally on relatively small scales. Factors influencing variability within tidal creek sediments were related to shifts in riverine freshwater inputs, macroalgal blooms, nutrient concentrations in overlying waters, and bioirrigation from the clam, Macoma balthica.
Resumo:
Red mangrove (Rhizophora mangle L.) forests have distinct tree-height zones, with tall trees fringing the ocean and shorter trees in interior stands. A long-term nitrogen (N) and phosphorus (P) fertilization experiment in Almirante Bay, Bocas del Toro Province, Panama has shown that tree-height zonation is primarily related to nutrient limitation. This experiment was used to test the effects of in-situ nutrient additions and tree zonation on mangrove sediments. The sediments underlying the experimental R. mangle trees were sampled and N<sub>2</sub> fixation, <sup>15</sup>N, chlorophyll a, percent N and P, and percent organic biomass were quantified. Both N and P additions significantly affected almost every parameter measured in both zones within this experiment. These results are likely to have implications for management since N and P inputs are predicted to increase throughout the tropics and subtropics worldwide.
Resumo:
A model to estimate the mean monthly growth of Crassostrea virginica oysters in Chesapeake Bay was developed. This model is based on the classic von Bertalanffy growth function, however the growth constant is changed every monthly timestep in response to short term changes in temperature and salinity. Using a dynamically varying growth constant allows the model to capture seasonal oscillations in growth, and growth responses to changing environmental conditions that previous applications of the von Bertalanffy model do not capture. This model is further expanded to include an estimation of Perkinsus marinus impacts on growth rates as well as estimations of ecosystem services provided by a restored oyster bar over time. The model was validated by comparing growth estimates from the model to oyster shell height observations from a variety of restoration sites in the upper Chesapeake Bay. Without using the P. marinus impact on growth, the model consistently overestimates mean oyster growth. However, when P. marinus effects are included in the model, the model estimates match the observed mean shell height closely for at least the first 3 years of growth. The estimates of ecosystem services suggested by this model imply that even with high levels of mortality on an oyster reef, the ecosystem services provided by that reef can still be maintained by growth for several years. Because larger oyster filter more water than smaller ones, larger oysters contribute more to the filtration and nutrient removal ecosystem services of the reef. Therefore a reef with an abundance of larger oysters will provide better filtration and nutrient removal. This implies that if an oyster restoration project is trying to improve water quality through oyster filtration, it is important to maintain the larger older oysters on the reef.
Resumo:
Atlantic croaker Micropogonias undulatus is a commercially and ecologically important bottom-associated fish that occurs in marine and estuarine systems from Cape Cod, MA to Mexico. I documented the temporal and spatial variability in the diet of Atlantic croaker in Chesapeake Bay and found that in the summer fish, particularly bay anchovies Anchoa mitchilli, make up at least 20% of the diet of croaker by weight. The use of a pelagic food source seems unusual for a bottom-associated fish such as croaker, but appears to be a crepuscular feeding habit that has not been previously detected. Thus, I investigated the bioenergetic consequences of secondary piscivory to the distribution of croaker, to the condition of individuals within the population and to the ecosystem. Generalized additive models revealed that the biomass of anchovy explained some of the variability in croaker occurrence and abundance in Chesapeake Bay. However, physical factors, specifically temperature, salinity, and seasonal dynamics were stronger determinants of croaker distribution than potential prey availability. To better understand the bioenergetic consequences of diet variability at the individual level, I tested the hypothesis that croaker feeding on anchovies would be in better condition than those feeding on polychaetes using a variety of condition measures that operate on multiple time scales, including RNA:DNA, Fulton's condition factor (K), relative weight (Wr), energy density, hepatosomatic index (HSI), and gonadosomatic index (GSI). Of these condition measures, several morphometric measures were significantly positively correlated with each other and with the percentage (by weight) of anchovy in croaker diets, suggesting that the type of prey eaten is important in improving the overall condition of individual croaker. To estimate the bioenergetic consequences of diet variability on growth and consumption in croaker, I developed and validated a bioenergetic model for Atlantic croaker in the laboratory. The application of this model suggested that croaker could be an important competitor with weakfish and striped bass for food resources during the spring and summer when population abundances of these three fishes are high in Chesapeake Bay. Even though anchovies made up a relatively small portion of croaker diet and only at certain times of the year, croaker consumed more anchovy at the population level than striped bass in all simulated years and nearly as much anchovy as weakfish. This indicates that weak trophic interactions between species are important in understanding ecosystem processes and should be considered in ecosystem-based management.
Resumo:
<p>Subteratogenic and other low-level chronic exposures to toxicant mixtures are an understudied threat to environmental and human health. It is especially important to understand the effects of these exposures for contaminants, such as polycyclic aromatic hydrocarbons (PAHs) a large group of more than 100 individual compounds, which are important environmental (including aquatic) contaminants. Aquatic sediments constitute a major sink for hydrophobic pollutants, and studies show PAHs can persist in sediments over time. Furthermore, estuarine systems (namely breeding grounds) are of particular concern, as they are highly impacted by a wide variety of pollutants, and estuarine fishes are often exposed to some of the highest levels of contaminants of any vertebrate taxon. Acute embryonic exposure to PAHs results in cardiac teratogenesis in fish, and early life exposure to certain individual PAHs and PAH mixtures cause heart alterations with decreased swimming capacity in adult fish. Consequently, the heart and cardiorespiratory system are thought to be targets of PAH mixture exposure. While many studies have investigated acute, teratogenic PAH exposures, few studies have longitudinally examined the impacts of subtle, subteratogenic PAH mixture exposures, which are arguably more broadly applicable to environmental contamination scenarios. The goal of this dissertation was to highlight the later-life consequences of early-life exposure to subteratogenic concentrations of a complex, environmentally relevant PAH mixture.</p><p>A unique population of Fundulus heteroclitus (the Atlantic killifish or mummichog, hereafter referred to as killifish), has adapted to creosote-based polycyclic aromatic hydrocarbons (PAHs) found at the Atlantic Wood Industries (AW) Superfund site in the southern branch of the Elizabeth River, VA, USA. This killifish population survives in a site heavily contaminated with a mixture of PAHs from former creosote operations. They have developed resistance to the acute toxicity and teratogenic effects caused by the mixture of PAHs in sediment from the site. The primary goal of this dissertation was to compare and contrast later-life outcomes of early-life, subteratogenic PAH mixture exposure in both the Atlantic Wood killifish (AW) and a naïve reference population of killifish from King’s Creek (KC; a relatively uncontaminated tributary of the Severn River, VA). Killifish from both populations were exposed to subteratogenic concentrations of a complex PAH-sediment extract, Elizabeth River Sediment Extract (ERSE), made by collecting sediment from the AW site. Fish were reared over a 5-month period in the laboratory, during which they were examined for a variety of molecular, physiological and behavioral responses. </p><p>The central aims of my dissertation were to determine alterations to embryonic gene expression, larval swimming activity, adult behavior, heart structure, enzyme activity, and swimming/cardiorespiratory performance following subteratogenic exposure to ERSE. I hypothesized that subteratogenic exposure to ERSE would impair cardiac ontogenic processes in a way that would be detectable via gene expression in embryos, and that the misregulation of cardiac genes would help to explain activity changes, behavioral deficits, and later-life swimming deficiencies. I also hypothesized that fish heart structure would be altered. In addition, I hypothesized that the AW killifish population would be resistant to developmental exposures and perform normally in later life challenges. To investigate these hypotheses, a series of experiments were carried out in PAH-adapted killifish from Elizabeth River and in reference killifish. As an ancillary project to the primary aims of the dissertation, I examined the toxicity of weaker aryl hydrocarbon receptor (AHR) agonists in combination with fluoranthene (FL), an inhibitor of cytochrome P4501A1 (CYP1A1). This side project was conducted in both Danio rerio (zebrafish) and the KC and AW killifish.</p><p>Embryonic gene expression was measured in both killifish populations over an ERSE dose response with multiple time points (12, 24, 48, and 144 hours post exposure). Genes known to play critical roles in cardiac structure/development, cardiac function, and angiogenesis were elevated, indicating cardiac damage and activation of cardiovascular repair mechanisms. These data helped to inform later-life swimming performance and cardiac histology studies. Behavior was assessed during light and dark cycles in larvae of both populations following developmental exposure to ERSE. While KC killifish showed activity differences following exposure, AW killifish showed no significant changes even at concentrations that would cause overt cardiac toxicity in KC killifish. Juvenile behavior experiments demonstrated hyperactivity following ERSE exposure in KC killifish, but no significant behavioral changes in AW killifish. Adult swimming performance via prolonged critical swimming capacity (Ucrit) demonstrated performance costs in the AW killifish. Furthermore, swimming performance decline was observed in KC killifish following exposure to increasing dilutions of ERSE. Lastly, cardiac histology suggested that early-life exposure to ERSE could result in cardiac structural alteration and extravasation of blood into the pericardial cavity.</p><p>Responses to AHR agonists resulted in a ranking of relative potency for agonists, and determined which agonists, when combined with FL, caused cardiac teratogenesis. These experiments showed interesting species differences for zebrafish and killifish. To probe mechanisms responsible for cardiotoxicity, a CYP1A-morpholino and a AHR2-morpholino were used to mimic FL effects or attempt to rescue cardiac deformities respectively. Findings suggested that the cardiac toxicity elicited by weak agonist + FL exposure was likely driven by AHR-independent mechanisms. These studies stand in contrast to previous research from our lab showing that moderate AHR agonist + FL caused cardiac toxicity that can be partially rescued by AHR-morpholino knockdown.</p><p>My findings will form better characterization of mechanisms of PAH toxicity, and advance our understanding of how subteratogenic mixtures of PAHs exert their toxic action in naïve killifish. Furthermore, these studies will provide a framework for investigating how subteratogenic exposures to PAH mixtures can impact aquatic organismal health and performance. Most importantly, these experiments have the potential to help inform risk assessment in fish, mammals, and potentially humans. Ultimately, this research will help protect populations exposed to subtle PAH-contamination.</p>
Resumo:
© 2015 Elsevier Ltd.Sedimentological, ichnological and paleontological analyses of the Early Miocene uppermost Monte León Formation and the lower part of the Santa Cruz Formation were carried out in Rincón del Buque (RDB), a fossiliferous locality north of RÃo Coyle in Santa Cruz Province, Patagonia, Argentina. This locality is of special importance because it contains the basal contact between the Monte Léon (MLF) and the Santa Cruz (SCF) formations and because it preserves a rich fossil assemblage of marine invertebrates and marine trace fossils, and terrestrial vertebrates and plants, which has not been extensively studied. A ~90m-thick section of the MLF and the SCF that crops out at RDB was selected for this study. Eleven facies associations (FA) are described, which are, from base to top: subtidal-intertidal deposits with Crassotrea orbignyi and bioturbation of the Skolithos-Cruziana ichnofacies (FA1); tidal creek deposits with terrestrial fossil mammals and Ophiomorpha isp. burrows (FA2); tidal flat deposits with Glossifungites ichnofacies (FA3); deposits of tidal channels (FA4) and tidal sand flats (FA5) both with and impoverish Skolithos ichnofacies associated; marsh deposits (FA6); tidal point bar deposits recording a depauperate mixture of both the Skolithos and Cruziana ichnofacies (FA7); fluvial channel deposits (FA8); fluvial point bar deposits (FA9); floodplain deposits (FA10); and pyroclastic and volcaniclastic deposits of the floodplain where terrestrial fossil mammal remains occur (FA11).The transition of the MLF-SCF at RDB reflects a changing depositional environment from the outer part of an estuary (FA1) through the central (FA2-6) to inner part of a tide-dominated estuary (FA7). Finally a fluvial system occurs with single channels of relatively low energy and low sinuosity enclosed by a broad, low-energy floodplain dominated by partially edaphized ash-fall, sheet-flood, and overbank deposits (FA8-11). Pyroclastic and volcaniclastic materials throughout the succession must have been deposited as ash-fall distal facies in a fluvial setting and also were carried by fluvial streams and redeposited in both estuarine and fluvial settings. These materials preserve most of the analyzed terrestrial fossil mammals that characterize the Santacrucian age of the RDB's succession. Episodic sedimentation under volcanic influence, high sedimentation rates and a relatively warm and seasonal climate are inferred for the MLF and SCF section.Lateral continuity of the marker horizons at RDB serve for correlation with other coastal localities such as the lower part of the coastal SCF south of RÃo Coyle (~17.6-17.4Ma) belonging to the Estancia La Costa Member of the SCF.
Resumo:
Nitrate from agricultural runoff are a significant cause of algal blooms in estuarine ecosystems such as the Chesapeake Bay. These blooms block sunlight vital to submerged aquatic vegetation, leading to hypoxic areas. Natural and constructed wetlands have been shown to reduce the amount of nitrate flowing into adjacent bodies of water. We tested three wetland plant species native to Maryland, Typha latifolia (cattail), Panicum virgatum (switchgrass), and Schoenoplectus validus (soft-stem bulrush), in wetland microcosms to determine the effect of species combination and organic amendment on nitrate removal. In the first phase of our study, we found that microcosms containing sawdust exhibited significantly greater nitrate removal than microcosms amended with glucose or hay at a low nitrate loading rate. In the second phase of our study, we confirmed that combining these plants removed nitrate, although no one combination was significantly better. Furthermore, the above-ground biomass of microcosms containing switchgrass had a significantly greater percentage of carbon than microcosms without switchgrass, which can be studied for potential biofuel use. Based on our data, future environmental groups can make a more informed decision when choosing biofuel-capable plant species for artificial wetlands native to the Chesapeake Bay Watershed.
Resumo:
Understanding the dynamics of fine sediment transport across the upper intertidal zone is critical in managing the erosion and accretion of intertidal areas, and in managed realignment/estuarine habitat recreation strategies. This paper examines the transfer of sediments between salt marsh and mudflat environments in two contrasting macrotidal estuaries: the Seine (France) and the Medway (UK), using data collected during two joint field seasons undertaken by the Anglo-French RIMEW project (Rives-Manche Estuary Watch). High-resolution ADCP, Altimeter, OBS and ASM measurements from mudflat and marsh surface environments have been combined with sediment trap data to examine short-term sediment transport processes under spring tide and storm flow conditions. In addition, the longer-term accumulation of sediment in each salt marsh system has been examined via radiometric dating of sediment cores. In the Seine, rapid sediment accumulation and expansion of salt marsh areas, and subsequent loss of open intertidal mudflats, is a major problem, and the data collected here indicate a distinct net landward flux of sediments into the marsh interior. Suspended sediment fluxes are much higher than in the Medway estuary (averaging 0.09 g/m(3)/s), and vertical accumulation rates at the salt marsh/mudflat boundary exceed 3 cm/y. Suspended sediment data collected during storm surge conditions indicate that significant in-wash of fine sediments into the marsh interior can occur during (and following) these high-magnitude events. In contrast to the Seine, the Medway is undergoing erosion and general loss of salt marsh areas. Suspended sediment fluxes are of the order of 0.03 g/m(3)/s, and the marsh system here has much lower rates of vertical accretion (sediment accumulation rates are ca. 4 mm/y). Current velocity data for the Medway site indicate higher velocities on the ebb tide than occur on the flood tide, which may be sufficient to remobilise sediments deposited on the previous tide and so force net removal of material from the marsh.
Resumo:
The rationale behind the use of analyses of estuarine organisms to assess levels of heavy-metal contamination is described and compared with alternative methods such as the analysis of waters or sediments. Based on field observations in United Kingdom estuaries and on evidence from the literature, an assessment is made of the suitability of 17 species as the indicators of metals and metalloids including Ag, As, Cd, Co, Cr, Cu, Hg, Ni, Se, Sn, Pb and Zn.
Resumo:
The use of the deposit-feeding molluscs Scrobicularia plana and Macoma balthica and the burrowing polychaete Nereis diversicolor as indicators of the biological availability of heavy metals in sediments has been evaluated. Concentrations of Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn and Zn have been measured in organisms and sediments from more than 30 estuaries in south west England and South Wales and indicate that the biological availability of most metals varies by order of magnitude between uncontaminated and contaminated sites. The results have been compared with those obtained with the use of other species of indicator organisms in estuaries.
Resumo:
This review provides insights into the distribution and impact of oestrogens and xeno-oestrogens in the aquatic environment and highlights some significant knowledge gaps in our understanding of endocrine disrupting chemicals. Key areas of uncertainty in the assessment of risk include the role of estuarine sediments in mediating the fate and bioavailability of environmental (xeno)oestrogens (notably their transfer to benthic organisms and estuarine food chains), together with evidence for endocrine disruption in invertebrate populations. Emphasis is placed on using published information to interpret the behaviour and effects of a small number of model compounds thought to contribute to oestrogenic effects in nature; namely, the natural steroid 17 beta -oestradiol (E2) and the synthetic hormone 17 alpha -ethinyloestradiol (EE2), together with the alkyl-phenols octyl- and nonyl-phenol (OP, NP) as oestrogen mimics. Individual sections of the review are devoted to sources and concentrations of (xeno)oestrogens in waterways, sediment partitioning and persistence, bioaccumulation rates and routes, assays and biomarkers of oestrogenicity, and, finally, a synopsis of reproductive and ecological effects in aquatic species.
Resumo:
The phenomenon of endocrine disruption is currently a source of growing concern. Feminisation of male fish in UK rivers has been shown to occur extensively and has been linked with exposure to endocrine-disrupting compounds present in the environment. Much less is known of the extent and scale of endocrine disruption in estuarine and marine ecosystems, particularly in invertebrates. We present evidence that intersex, in the form of ovotestis, is occurring in the common estuarine bivalve Scrobicularia plana, which is considered to be inherently gonochoristic. We report varying degrees in the severity of ovotestis in male S. plana, and have adopted and developed a grading method to assess the extent of this intersex condition. These findings indicate that S. plana offers potential for widespread screening and investigation of endocrine disruption, helping to focus remediatory strategy.
Resumo:
The effect of elevated pCO(2)/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567A degrees N, 4.1277A degrees W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (a"broken vertical bar(calc) = 0.78, a"broken vertical bar(ara) = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO(2) can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO(2)-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.