856 resultados para Estimations
Resumo:
Guest editorial Ali Emrouznejad is a Senior Lecturer at the Aston Business School in Birmingham, UK. His areas of research interest include performance measurement and management, efficiency and productivity analysis as well as data mining. He has published widely in various international journals. He is an Associate Editor of IMA Journal of Management Mathematics and Guest Editor to several special issues of journals including Journal of Operational Research Society, Annals of Operations Research, Journal of Medical Systems, and International Journal of Energy Management Sector. He is in the editorial board of several international journals and co-founder of Performance Improvement Management Software. William Ho is a Senior Lecturer at the Aston University Business School. Before joining Aston in 2005, he had worked as a Research Associate in the Department of Industrial and Systems Engineering at the Hong Kong Polytechnic University. His research interests include supply chain management, production and operations management, and operations research. He has published extensively in various international journals like Computers & Operations Research, Engineering Applications of Artificial Intelligence, European Journal of Operational Research, Expert Systems with Applications, International Journal of Production Economics, International Journal of Production Research, Supply Chain Management: An International Journal, and so on. His first authored book was published in 2006. He is an Editorial Board member of the International Journal of Advanced Manufacturing Technology and an Associate Editor of the OR Insight Journal. Currently, he is a Scholar of the Advanced Institute of Management Research. Uses of frontier efficiency methodologies and multi-criteria decision making for performance measurement in the energy sector This special issue aims to focus on holistic, applied research on performance measurement in energy sector management and for publication of relevant applied research to bridge the gap between industry and academia. After a rigorous refereeing process, seven papers were included in this special issue. The volume opens with five data envelopment analysis (DEA)-based papers. Wu et al. apply the DEA-based Malmquist index to evaluate the changes in relative efficiency and the total factor productivity of coal-fired electricity generation of 30 Chinese administrative regions from 1999 to 2007. Factors considered in the model include fuel consumption, labor, capital, sulphur dioxide emissions, and electricity generated. The authors reveal that the east provinces were relatively and technically more efficient, whereas the west provinces had the highest growth rate in the period studied. Ioannis E. Tsolas applies the DEA approach to assess the performance of Greek fossil fuel-fired power stations taking undesirable outputs into consideration, such as carbon dioxide and sulphur dioxide emissions. In addition, the bootstrapping approach is deployed to address the uncertainty surrounding DEA point estimates, and provide bias-corrected estimations and confidence intervals for the point estimates. The author revealed from the sample that the non-lignite-fired stations are on an average more efficient than the lignite-fired stations. Maethee Mekaroonreung and Andrew L. Johnson compare the relative performance of three DEA-based measures, which estimate production frontiers and evaluate the relative efficiency of 113 US petroleum refineries while considering undesirable outputs. Three inputs (capital, energy consumption, and crude oil consumption), two desirable outputs (gasoline and distillate generation), and an undesirable output (toxic release) are considered in the DEA models. The authors discover that refineries in the Rocky Mountain region performed the best, and about 60 percent of oil refineries in the sample could improve their efficiencies further. H. Omrani, A. Azadeh, S. F. Ghaderi, and S. Abdollahzadeh presented an integrated approach, combining DEA, corrected ordinary least squares (COLS), and principal component analysis (PCA) methods, to calculate the relative efficiency scores of 26 Iranian electricity distribution units from 2003 to 2006. Specifically, both DEA and COLS are used to check three internal consistency conditions, whereas PCA is used to verify and validate the final ranking results of either DEA (consistency) or DEA-COLS (non-consistency). Three inputs (network length, transformer capacity, and number of employees) and two outputs (number of customers and total electricity sales) are considered in the model. Virendra Ajodhia applied three DEA-based models to evaluate the relative performance of 20 electricity distribution firms from the UK and the Netherlands. The first model is a traditional DEA model for analyzing cost-only efficiency. The second model includes (inverse) quality by modelling total customer minutes lost as an input data. The third model is based on the idea of using total social costs, including the firm’s private costs and the interruption costs incurred by consumers, as an input. Both energy-delivered and number of consumers are treated as the outputs in the models. After five DEA papers, Stelios Grafakos, Alexandros Flamos, Vlasis Oikonomou, and D. Zevgolis presented a multiple criteria analysis weighting approach to evaluate the energy and climate policy. The proposed approach is akin to the analytic hierarchy process, which consists of pairwise comparisons, consistency verification, and criteria prioritization. In the approach, stakeholders and experts in the energy policy field are incorporated in the evaluation process by providing an interactive mean with verbal, numerical, and visual representation of their preferences. A total of 14 evaluation criteria were considered and classified into four objectives, such as climate change mitigation, energy effectiveness, socioeconomic, and competitiveness and technology. Finally, Borge Hess applied the stochastic frontier analysis approach to analyze the impact of various business strategies, including acquisition, holding structures, and joint ventures, on a firm’s efficiency within a sample of 47 natural gas transmission pipelines in the USA from 1996 to 2005. The author finds that there were no significant changes in the firm’s efficiency by an acquisition, and there is a weak evidence for efficiency improvements caused by the new shareholder. Besides, the author discovers that parent companies appear not to influence a subsidiary’s efficiency positively. In addition, the analysis shows a negative impact of a joint venture on technical efficiency of the pipeline company. To conclude, we are grateful to all the authors for their contribution, and all the reviewers for their constructive comments, which made this special issue possible. We hope that this issue would contribute significantly to performance improvement of the energy sector.
Resumo:
Biological experiments often produce enormous amount of data, which are usually analyzed by data clustering. Cluster analysis refers to statistical methods that are used to assign data with similar properties into several smaller, more meaningful groups. Two commonly used clustering techniques are introduced in the following section: principal component analysis (PCA) and hierarchical clustering. PCA calculates the variance between variables and groups them into a few uncorrelated groups or principal components (PCs) that are orthogonal to each other. Hierarchical clustering is carried out by separating data into many clusters and merging similar clusters together. Here, we use an example of human leukocyte antigen (HLA) supertype classification to demonstrate the usage of the two methods. Two programs, Generating Optimal Linear Partial Least Square Estimations (GOLPE) and Sybyl, are used for PCA and hierarchical clustering, respectively. However, the reader should bear in mind that the methods have been incorporated into other software as well, such as SIMCA, statistiXL, and R.
Resumo:
In the field of Transition P systems implementation, it has been determined that it is very important to determine in advance how long takes evolution rules application in membranes. Moreover, to have time estimations of rules application in membranes makes possible to take important decisions related to hardware / software architectures design. The work presented here introduces an algorithm for applying active evolution rules in Transition P systems, which is based on active rules elimination. The algorithm complies the requisites of being nondeterministic, massively parallel, and what is more important, it is time delimited because it is only dependant on the number of membrane evolution rules.
Resumo:
* The work is supported by RFBR, grant 04-01-00858-a
Resumo:
Similar to classic Signal Detection Theory (SDT), recent optimal Binary Signal Detection Theory (BSDT) and based on it Neural Network Assembly Memory Model (NNAMM) can successfully reproduce Receiver Operating Characteristic (ROC) curves although BSDT/NNAMM parameters (intensity of cue and neuron threshold) and classic SDT parameters (perception distance and response bias) are essentially different. In present work BSDT/NNAMM optimal likelihood and posterior probabilities are analytically analyzed and used to generate ROCs and modified (posterior) mROCs, optimal overall likelihood and posterior. It is shown that for the description of basic discrimination experiments in psychophysics within the BSDT a ‘neural space’ can be introduced where sensory stimuli as neural codes are represented and decision processes are defined, the BSDT’s isobias curves can simultaneously be interpreted as universal psychometric functions satisfying the Neyman-Pearson objective, the just noticeable difference (jnd) can be defined and interpreted as an atom of experience, and near-neutral values of biases are observers’ natural choice. The uniformity or no-priming hypotheses, concerning the ‘in-mind’ distribution of false-alarm probabilities during ROC or overall probability estimations, is introduced. The BSDT’s and classic SDT’s sensitivity, bias, their ROC and decision spaces are compared.
Resumo:
The system of development unstable processes prediction is given. It is based on a decision-tree method. The processing technique of the expert information is offered. It is indispensable for constructing and processing by a decision-tree method. In particular data is set in the fuzzy form. The original search algorithms of optimal paths of development of the forecast process are described. This one is oriented to processing of trees of large dimension with vector estimations of arcs.
Resumo:
In this article the new approach for optimization of estimations calculating algorithms is suggested. It can be used for finding the correct algorithm of minimal complexity in the context of algebraic approach for pattern recognition.
Resumo:
Transition P systems are computational models based on basic features of biological membranes and the observation of biochemical processes. In these models, membrane contains objects multisets, which evolve according to given evolution rules. In the field of Transition P systems implementation, it has been detected the necessity to determine whichever time are going to take active evolution rules application in membranes. In addition, to have time estimations of rules application makes possible to take important decisions related to the hardware / software architectures design. In this paper we propose a new evolution rules application algorithm oriented towards the implementation of Transition P systems. The developed algorithm is sequential and, it has a linear order complexity in the number of evolution rules. Moreover, it obtains the smaller execution times, compared with the preceding algorithms. Therefore the algorithm is very appropriate for the implementation of Transition P systems in sequential devices.
Resumo:
The task of smooth and stable decision rules construction in logical recognition models is considered. Logical regularities of classes are defined as conjunctions of one-place predicates that determine the membership of features values in an intervals of the real axis. The conjunctions are true on a special no extending subsets of reference objects of some class and are optimal. The standard approach of linear decision rules construction for given sets of logical regularities consists in realization of voting schemes. The weighting coefficients of voting procedures are done as heuristic ones or are as solutions of complex optimization task. The modifications of linear decision rules are proposed that are based on the search of maximal estimations of standard objects for their classes and use approximations of logical regularities by smooth sigmoid functions.
Resumo:
Background/aims - To determine which biometric parameters provide optimum predictive power for ocular volume. Methods - Sixty-seven adult subjects were scanned with a Siemens 3-T MRI scanner. Mean spherical error (MSE) (D) was measured with a Shin-Nippon autorefractor and a Zeiss IOLMaster used to measure (mm) axial length (AL), anterior chamber depth (ACD) and corneal radius (CR). Total ocular volume (TOV) was calculated from T2-weighted MRIs (voxel size 1.0 mm3) using an automatic voxel counting and shading algorithm. Each MR slice was subsequently edited manually in the axial, sagittal and coronal plane, the latter enabling location of the posterior pole of the crystalline lens and partitioning of TOV into anterior (AV) and posterior volume (PV) regions. Results - Mean values (±SD) for MSE (D), AL (mm), ACD (mm) and CR (mm) were −2.62±3.83, 24.51±1.47, 3.55±0.34 and 7.75±0.28, respectively. Mean values (±SD) for TOV, AV and PV (mm3) were 8168.21±1141.86, 1099.40±139.24 and 7068.82±1134.05, respectively. TOV showed significant correlation with MSE, AL, PV (all p<0.001), CR (p=0.043) and ACD (p=0.024). Bar CR, the correlations were shown to be wholly attributable to variation in PV. Multiple linear regression indicated that the combination of AL and CR provided optimum R2 values of 79.4% for TOV. Conclusion - Clinically useful estimations of ocular volume can be obtained from measurement of AL and CR.
Resumo:
2000 Mathematics Subject Classification: 62H15, 62H12.
Resumo:
The focus of this study is on the governance decisions in a concurrent channels context, in the case of uncertainty. The study examines how a firm chooses to deploy its sales force in times of uncertainty, and the subsequent performance outcome of those deployment choices. The theoretical framework is based on multiple theories of governance, including transaction cost analysis (TCA), agency theory, and institutional economics. Three uncertainty variables are investigated in this study. The first two are demand and competitive uncertainty which are considered to be industry-level market uncertainty forms. The third uncertainty, political uncertainty, is chosen as it is an important dimension of institutional environments, capturing non-economic circumstances such as regulations and political systemic issues. The study employs longitudinal secondary data from a Thai hotel chain, comprising monthly observations from January 2007 – December 2012. This hotel chain has its operations in 4 countries, Thailand, the Philippines, United Arab Emirates – Dubai, and Egypt, all of which experienced substantial demand, competitive, and political uncertainty during the study period. This makes them ideal contexts for this study. Two econometric models, both deploying Newey-West estimations, are employed to test 13 hypotheses. The first model considers the relationship between uncertainty and governance. The second model is a version of Newey-West, using an Instrumental Variables (IV) estimator and a Two-Stage Least Squares model (2SLS), to test the direct effect of uncertainty on performance and the moderating effect of governance on the relationship between uncertainty and performance. The observed relationship between uncertainty and governance observed follows a core prediction of TCA; that vertical integration is the preferred choice of governance when uncertainty rises. As for the subsequent performance outcomes, the results corroborate that uncertainty has a negative effect on performance. Importantly, the findings show that becoming more vertically integrated cannot help moderate the effect of demand and competitive uncertainty, but can significantly moderate the effect of political uncertainty. These findings have significant theoretical and practical implications, and extend our knowledge of the impact on uncertainty significantly, as well as bringing an institutional perspective to TCA. Further, they offer managers novel insight into the nature of different types of uncertainty, their impact on performance, and how channel decisions can mitigate these impacts.
Resumo:
In SNAP (Surface nanoscale axial photonics) resonators propagation of a slow whispering gallery mode along an optical fiber is controlled by nanoscale variation of the effective radius of the fiber [1]. Similar behavior can be realized in so - called nanobump microresonators in which the introduced variation of the effective radius is asymmetric, i.e. depends on the axial coordinate [2]. The possibilities of realization of such structures “on the fly” in an optical fiber by applying external electrostatic fields to it is discussed in this work. It is shown that local variations in effective radius of the fiber and in its refractive index caused by external electric fields can be large enough to observe SNAP structure - like behavior in an originally flat optical fiber. Theoretical estimations of the introduced refractive index and effective radius changes and results of finite element calculations are presented. Various effects are taken into account: electromechanical (piezoelectricity and electrostriction), electro-optical (Pockels and Kerr effects) and elasto-optical effect. Different initial fibre cross-sections are studied. The aspects of use of linear isotropic (such as silica) and non-linear anisotropic (such as lithium niobate) materials of the fiber are discussed. REFERENCES [1] M. Sumetsky, J. M. Fini, Opt. Exp. 19, 26470 (2011). [2] L. A. Kochkurov, M. Sumetsky, Opt. Lett. 40, 1430 (2015).
Resumo:
This paper studies the role of fiscal and monetary institutions in macroeconomic stability and budgetary control in central, eastern and south-eastern European countries (CESEE) in comparison with other OECD countries. CESEE countries tend to grow faster and have more volatile output than non-CESEE OECD countries, which has implications for macroeconomic management: better fiscal and monetary institutions are needed to avoid pro-cyclical policies. The paper develops a Budgetary Discipline Index to assess whether good fiscal institutions underpin good fiscal outcomes. Even though most CESEE countries have low scores, the debt/GDP ratios declined before the crisis. This was largely the consequence of a very favourable relationship between the economic growth rate and the interest rate, but such a favourable relationship is not expected in the future. Econometric estimations confirm that better monetary institutions reduce macroeconomic volatility and that countries with better budgetary procedures have better fiscal outcomes. All these factors call for improved monetary institutions, stronger fiscal rules and better budgetary procedures in CESEE countries.
Resumo:
A környezeti kockázatok megfelelő felmérése és kezelése napjaink egyik legfontosabb kérdése, nemcsak a szakmai, hanem a széles értelemben vett közvélemény számára. A szerző cikkében azt vizsgálja, hogy a környezeti kockázatok felmérésének milyen megközelítései vannak. Kulcskérdésként pedig arra koncentrál, hogy a kockázatkezelési döntéseket hogyan befolyásolja a becslések bizonytalansága. Először a környezeti kockázat definícióját adja meg, majd azt mutatja be, hogy a környezeti kockázatok kezelésére vonatkozó megközelítések milyen párhuzamban állnak a pénzügyi rendszerrel, mint komplex rendszerre vonatkozó megközelítésekkel. Végül a jelenleg legnagyobb kockázatoknak tartott környezeti kockázatokat ismerteti röviden. A cikk második részében kockázatkezelési alternatívákat mutat be, és azt, hogy a kockázatkezelési lépések kiválasztását befolyásolja a bizonytalanság. Ezt illusztrálandó Brouwer-Blois (2008) modelljét használva a soklépéses szimulációt és alternatív döntési kritériumot – a kritikus (extrém) költség-hatás mutatót – alkalmazza. _____________ Adequate assessment and management of environmental risks is a key question nowadays also for professional experts and also for the overall public. In this article the author examines the different approaches concerning environmental risks. He concentrates as a key question the influence on risk management decisions of uncertainties raised by our estimations. First he analyses the definition of environmental risks, and he shows the similarities and differences between approaches concerning environmental risks and risks threatening financial system, and finally he gives short overview on the most current environmental risks. In the second part of the paper he presents risk management alternatives and analyses the influential power of uncertainty on risk management decisions. In order to illustrate this phenomenon the author applies the model of Brouwer-Blois (2008) with multistep simulation and an alternative decisive criterion, the ranking based on critical (extreme) cost to effect measure.