996 resultados para Enhanced sampling
Resumo:
Surface enhanced Raman scattering (SERS) is a well-established spectroscopic technique that requires nanoscale metal structures to achieve high signal sensitivity. While most SERS substrates are manufactured by conventional lithographic methods, the development of a cost-effective approach to create nanostructured surfaces is a much sought-after goal in the SERS community. Here, a method is established to create controlled, self-organized, hierarchical nanostructures using electrohydrodynamic (HEHD) instabilities. The created structures are readily fine-tuned, which is an important requirement for optimizing SERS to obtain the highest enhancements. HEHD pattern formation enables the fabrication of multiscale 3D structured arrays as SERS-active platforms. Importantly, each of the HEHD-patterned individual structural units yield a considerable SERS enhancement. This enables each single unit to function as an isolated sensor. Each of the formed structures can be effectively tuned and tailored to provide high SERS enhancement, while arising from different HEHD morphologies. The HEHD fabrication of sub-micrometer architectures is straightforward and robust, providing an elegant route for high-throughput biological and chemical sensing.
Resumo:
On page OP 175, U. Steiner and co-workers destabilise polymer trilayer films using an electric field to generate separated micrometre-sized core-shell pillars, which are further modified by selective polymer dissolution to yield polymer core columns surrounded by a rim and micro-volcano rim structures. When coated with gold and decorated with Raman active probes, all three structure types give rise to substantial enhancement in surface-enhanced Raman scattering (SERS). Since this SERS enhancement arises from each of the isolated structures in the array, these surface patterns are an ideal platform for multiplexed SERS detection.
Resumo:
The propagation of ultrashort pulses in a traveling wave semiconductor amplifier is considered. It is demonstrated that the effective polarization relaxation time, which determines the coherence of the interaction of pulses within the medium, strongly depends on its optical gain. As a result, it is shown that at large optical gains the coherence time can exceed the transverse relaxation time T2 by an order of magnitude, this accounting for the strong femtosecond superradiant pulse generation commonly observed in semiconductor laser structures. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The recently introduced nested sampling algorithm allows the direct and efficient calculation of the partition function of atomistic systems. We demonstrate its applicability to condensed phase systems with periodic boundary conditions by studying the three dimensional hard sphere model. Having obtained the partition function, we show how easy it is to calculate the compressibility and the free energy as functions of the packing fraction and local order, verifying that the transition to crystallinity has a very small barrier, and that the entropic contribution of jammed states to the free energy is negligible for packing fractions above the phase transition. We quantify the previously proposed schematic phase diagram and estimate the extent of the region of jammed states. We find that within our samples, the maximally random jammed configuration is surprisingly disordered.
Resumo:
Manual inspection is required to determine the condition of damaged buildings after an earthquake. The lack of available inspectors, when combined with the large volume of inspection work, makes such inspection subjective and time-consuming. Completing the required inspection takes weeks to complete, which has adverse economic and societal impacts on the affected population. This paper proposes an automated framework for rapid post-earthquake building evaluation. Under the framework, the visible damage (cracks and buckling) inflicted on concrete columns is first detected. The damage properties are then measured in relation to the column's dimensions and orientation, so that the column's load bearing capacity can be approximated as a damage index. The column damage index supplemented with other building information (e.g. structural type and columns arrangement) is then used to query fragility curves of similar buildings, constructed from the analyses of existing and on-going experimental data. The query estimates the probability of the building being in different damage states. The framework is expected to automate the collection of building damage data, to provide a quantitative assessment of the building damage state, and to estimate the vulnerability of the building to collapse in the event of an aftershock. Videos and manual assessments of structures after the 2009 earthquake in Haiti are used to test the parts of the framework.
Resumo:
Camera motion estimation is one of the most significant steps for structure-from-motion (SFM) with a monocular camera. The normalized 8-point, the 7-point, and the 5-point algorithms are normally adopted to perform the estimation, each of which has distinct performance characteristics. Given unique needs and challenges associated to civil infrastructure SFM scenarios, selection of the proper algorithm directly impacts the structure reconstruction results. In this paper, a comparison study of the aforementioned algorithms is conducted to identify the most suitable algorithm, in terms of accuracy and reliability, for reconstructing civil infrastructure. The free variables tested are baseline, depth, and motion. A concrete girder bridge was selected as the "test-bed" to reconstruct using an off-the-shelf camera capturing imagery from all possible positions that maximally the bridge's features and geometry. The feature points in the images were extracted and matched via the SURF descriptor. Finally, camera motions are estimated based on the corresponding image points by applying the aforementioned algorithms, and the results evaluated.
Resumo:
We present a novel filtering algorithm for tracking multiple clusters of coordinated objects. Based on a Markov chain Monte Carlo (MCMC) mechanism, the new algorithm propagates a discrete approximation of the underlying filtering density. A dynamic Gaussian mixture model is utilized for representing the time-varying clustering structure. This involves point process formulations of typical behavioral moves such as birth and death of clusters as well as merging and splitting. For handling complex, possibly large scale scenarios, the sampling efficiency of the basic MCMC scheme is enhanced via the use of a Metropolis within Gibbs particle refinement step. As the proposed methodology essentially involves random set representations, a new type of estimator, termed the probability hypothesis density surface (PHDS), is derived for computing point estimates. It is further proved that this estimator is optimal in the sense of the mean relative entropy. Finally, the algorithm's performance is assessed and demonstrated in both synthetic and realistic tracking scenarios. © 2012 Elsevier Ltd. All rights reserved.
Comparisons between gigabit NRZ, CAP and optical OFDM systems over FEC enhanced POF links using LEDs
Resumo:
Simulations have been performed to compare the link power budget and power dissipation of carrierless amplitude and phase modulation-64 (CAP-64) and 64-quadrature amplitude modulation-orthogonal frequency division multiplexing (64-QAM-OFDM) systems over feedforward error correction (FEC) enhanced plastic optical fibre (POF) links using light emitting diodes (LEDs). It is shown that CAP-64 outperforms 64-QAM-OFDM and supports record high 2.1Gb/s over 50m POF transmission. The CAP-64 and 64-QAM-OFDM links consume similar powers which are 2 (2.5) times of that of NRZ for the single POF link (twin POF links) case. © 2012 IEEE.
Optimized vertical carbon nanotube forests for multiplex surface-enhanced raman scattering detection
Resumo:
The highly sensitive and molecule-specific technique of surface-enhanced Raman spectroscopy (SERS) generates high signal enhancements via localized optical fields on nanoscale metallic materials, which can be tuned by manipulation of the surface roughness and architecture on the submicrometer level. We investigate gold-functionalized vertically aligned carbon nanotube forests (VACNTs) as low-cost straightforward SERS nanoplatforms. We find that their SERS enhancements depend on their diameter and density, which are systematically optimized for their performance. Modeling of the VACNT-based SERS substrates confirms consistent dependence on structural parameters as observed experimentally. The created nanostructures span over large substrate areas, are readily configurable, and yield uniform and reproducible SERS enhancement factors. Further fabricated micropatterned VACNTs platforms are shown to deliver multiplexed SERS detection. The unique properties of CNTs, which can be synergistically utilized in VACNT-based substrates and patterned arrays, can thus provide new generation platforms for SERS detection. © 2012 American Chemical Society.
Resumo:
In this letter we report a facile one-pot synthesis of intercalated ZnO particles for inexpensive, low-temperature solution processed dye-sensitised solar cells. High interconnectivity facilitates enhanced charge transfer between the ZnO nanoparticles and a consequent enhancement in cell efficiency. ZnO thin films were formed from a wide range of nanoparticle diameters which simultaneously increased optical scattering whilst enhancing dye loading. A possible growth mechanism was proposed for the synthesis of ZnO nanoparticles. The intercalated ZnO nanoparticle thin films were integrated into the photoanodes of dye-sensitised solar cells which showed an increase in performance of 37% compared to structurally equivalent cells employing ZnO nanowires. © 2012 Elsevier B.V.
Resumo:
α-(Yb1-xErx)2Si2O7 thin films on Si substrates were synthesized by magnetron co-sputtering. The optical emission from Er3+ ions has been extensively investigated, evidencing the very efficient role of Yb-Er coupling. The energy-transfer coefficient was evaluated for an extended range of Er content (between 0.2 and 16.5 at.%) reaching a maximum value of 2 × 10⁻¹⁶ cm⁻³s⁻¹. The highest photoluminescence emission at 1535 nm is obtained as a result of the best compromise between the number of Yb donors (16.4 at.%) and Er acceptors (1.6 at.%), for which a high population of the first excited state is reached. These results are very promising for the realization of 1.54 μm optical amplifiers on a Si platform.
Resumo:
Photon cutting with efficiencies up to 400% is demonstrated in Erx Y2-x Si2 O7 films grown on Si and its concentration dependence is analyzed. The cutting is the result of cross-energy-transfer processes occurring within a single rare earth (Er3+) acting as both sensitizer and activator. Similarities with upconversion are revealed and possible applications in solar cells are discussed. © 2010 The American Physical Society.