977 resultados para Engineering, Electronics and Electrical|Physics, Condensed Matter
Resumo:
YBa2Cu3-xTaxO7-y (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6) superconductors have been prepared, X-ray diffraction shows that the system remains orthorhombic for all compositions studied but. for x > 0.2, Ta2O5 was detected as an impurity phase. Substitution of Ta5+ for Cu2+ occurs in the Cu(2) sites on the Cu(2)O planes. The introduction of the high-valence element tantalum produces extra free electrons. These electrons recombine with the positive carrier of the system, which causes the mobility and the Hall number of YBa2Cu3-xTaxO7-y to decrease and also results in a depression in T(c).
Resumo:
These simulation calculations for the oxygen-atom vacancy in the high temperature superconductor TlBa2Ca(n-1)Cu(n)O2n+2.5(n = 1) have been performed by means of the tight-binding approximation based on the EHMO method. The results indicate that the effect of the oxygen-atom vacancy on the charge distributions at the Tl-, Ba-, Cu- and O-atom sites is appreciably different and that there may exist two kinds of Cu cation with different net charges (approximately + 3.0 or approximately + 1.0) due to the oxygen-atom vacancy in the lattice. The electric field gradient at the site of the oxygen-atom vacancy has been calculated. The position of the oxygen-atom vacancy which favours the high temperature superconductivity of TlBa2Ca(n-1)Cu(n)O2n+2.5(n = 1) has been discussed.
Resumo:
Effective elastic properties of piezoelectric composites containing an infinitely long, radially polarized cylinder embedded in an isotropic non-piezoelectric matrix are theoretically investigated under an external strain field. Analytical solutions of elastic displacement and electric potentials are exactly derived, and the effective elastic responses are formulated in the dilute limit. Meanwhile, a vanishing piezoelectric response mechanism is revealed in the piezoelectric composite containing radially polarized cylinders. Furthermore, it is shown that the effective elastic properties can be enhanced (or reduced) due to the increase of the piezoelectric (or dielectric) constants of the cylinders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The perturbation method is developed to deal with the effective nonlinear dielectric responses of weakly nonlinear graded composites, which consist of the graded inclusion with a linear dielectric function of spatial variables of inclusion material. For Kerr-like nonlinear graded composites, as an example in two dimensions, we have used the perturbation method to solve the boundary value problems of potentials, and studied the effective responses of nonlinear graded composites, where a cylindrical inclusion with linear dielectric function and nonlinear dielectric constant is randomly embedded in a homogeneous host with linear and nonlinear dielectric constants. For the exponential function and the power-law dielectric profiles of cylindrical inclusions, in the dilute limit, we have derived the formulae of effective nonlinear responses of both graded nonlinear composites.
Resumo:
Effective dielectric responses of graded cylindrical composites are investigated when an external uniform field is applied to the composites. Considering linear random composites of cylindrical particles with a specific dielectric function, which varies along the radial direction of the particles, we have studied three cases of dielectric profiles: exponential function, linear and power-law profiles. For each case, the effective dielectric response of graded composites is given on the basis of exact solutions of the local potentials of composites in the dilute limit. For a larger volume fraction, we have proposed an effective medium approximation to estimate the effective dielectric response.
Resumo:
The effective property has been investigated theoretically in graded elliptical cylindrical composite's consisting of inhomogeneous graded elliptical cylinders and an isotropic matrix under external uniform electric field. As a theoretical model, the dielectric gradient profile in the elliptical cylinder is modeled by a power-law function of short semi-axis variable parameter (xi(2) - 1) in the elliptical cylindrical coordinates, namely epsilon(i)(xi) = c(k) (xi(2) - 1)(k), where c(k) and k are the parameters, and xi is the long semi-axis space variable in an elliptical cylindrical inclusion region. In the dilute limit, the local analytical potentials in inclusion and matrix regions are derived exactly by means of the hyper-geometric function, and the formulas are given for estimating the effective dielectric responses under the external lfield along (x) over cap- and (y) over cap -directions, respectively. Furthermore, we have demonstrated that our effective response formulas can be reduced to the well-known results of homogeneous isotropic elliptical cylindrical composites if we take the limit k -> 0 in graded elliptical cylindrical composites. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Corrosion inhibition by some new triazole derivatives on mild steel in 1 M hydrochloric acid solutions has been investigated by weight loss test, electrochemical measurement, scanning electronic microscope analysis and quantum chemical calculations. The results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds following the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were calculated. (C) 2009 Published by Elsevier B.V.
Resumo:
Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berbefine is an excellent corrosion inhibitor for mild steel immersed in 1M H2SO4. Potentiodynamic curves suggested that berbefine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 x 10(-4) M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berbefine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Kargl, Florian; Sj?str?m, J.; Fernandez-Alonso, F.; Swenson, J., (2007) 'The dynamics of water in hydrated white bread investigated using quasielastic neutron scattering', Journal of Physics: Condensed Matter 19 pp.415119 RAE2008
Resumo:
McMillan, P. F., Wilson, M., Wilding, M. C. (2003). Polyamorphism in aluminate liquids. Journal of Physics: Condensed Matter, 15 (36), 6105-6121 RAE2008
Resumo:
A novel multi-scale seamless model of brittle-crack propagation is proposed and applied to the simulation of fracture growth in a two-dimensional Ag plate with macroscopic dimensions. The model represents the crack propagation at the macroscopic scale as the drift-diffusion motion of the crack tip alone. The diffusive motion is associated with the crack-tip coordinates in the position space, and reflects the oscillations observed in the crack velocity following its critical value. The model couples the crack dynamics at the macroscales and nanoscales via an intermediate mesoscale continuum. The finite-element method is employed to make the transition from the macroscale to the nanoscale by computing the continuum-based displacements of the atoms at the boundary of an atomic lattice embedded within the plate and surrounding the tip. Molecular dynamics (MD) simulation then drives the crack tip forward, producing the tip critical velocity and its diffusion constant. These are then used in the Ito stochastic calculus to make the reverse transition from the nanoscale back to the macroscale. The MD-level modelling is based on the use of a many-body potential. The model successfully reproduces the crack-velocity oscillations, roughening transitions of the crack surfaces, as well as the macroscopic crack trajectory. The implications for a 3-D modelling are discussed.
Neutron quasi-elastic scattering in disordered solids: a Monte Carlo study of metal-hydrogen systems
Resumo:
The dynamic structure factor of neutron quasi-elastic scattering has been calculated by Monte Carlo methods for atoms diffusing on a disordered lattice. The disorder includes not only variation in the distances between neighbouring atomic sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent intermediate scattering function which translate into a significant increase in the intensity in the wings of the quasi-elastic spectrum as compared with the Lorentzian form. The effect is particularly marked at high values of the momentum transfer and at site occupancies of the order of unity. The MC calculations demonstrate how the degree of disorder may be derived from experimental measurements of the quasi-elastic scattering. The model structure factors are compared with the experimental quasi-elastic spectrum of an amorphous metal-hydrogen alloy.