810 resultados para Energy management


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors would like to thank the leadership of the Deep Ocean Stewardship Initiative (DOSI), including Lisa Levin, Maria Baker, and Kristina Gjerde, for their support in developing this review. This work evolved from a meeting of the DOSI Oil and Gas working group supported by the J.M. Kaplan Fund, and associated with the Deep-Sea Biology Symposium in Aveiro, Portugal in September 2015. The members of the Oil and Gas working group that contributed to our discussions at that meeting or through the listserve are acknowledged for their contributions to this work. We would also like to thank the three reviewers and the editor who provided valuable comments and insight into the work presented here. DJ and AD were supported by funding from the European Union's Horizon 2020 research and innovation programme under the MERCES (Marine Ecosystem Restoration in Changing European Seas) project, grant agreement No 689518. AB was supported by CNPq grants 301412/2013-8 and 200504/2015-0. LH acknowledges funding provided by a Natural Environment Research Council grant (NE/L008181/1). This output reflects only the authors' views and the funders cannot be held responsible for any use that may be made of the information contained therein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a theoretical description of the generation of ultra-short, high-energy pulses in two laser cavities driven by periodic spectral filtering or dispersion management. Critical in driving the intra-cavity dynamics is the nontrivial phase profiles generated and their periodic modification from either spectral filtering or dispersion management. For laser cavities with a spectral filter, the theory gives a simple geometrical description of the intra-cavity dynamics and provides a simple and efficient method for optimizing the laser cavity performance. In the dispersion managed cavity, analysis shows the generated self-similar behavior to be governed by the porous media equation with a rapidly-varying, mean-zero diffusion coefficient whose solution is the well-known Barenblatt similarity solution with parabolic profile.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technological capability (TC) plays a strategic role in the competitive advantage of not only individual corporate entities but also entire industries. This paper investigates the crucial factors that affect technological capability development by Energy Service Companies (ESCOs) in China. It identifies how differently sized ESCOs make progress in developing TCs. Through looking at the successes achieved by developed countries in the field of energy conservation, ESCOs are able to improve energy efficiency and reduce emissions and are deemed to provide an effective means of conserving energy in China. Existing literature indicates that limited TC levels of are one of the crucial barriers facing Chinese ESCOs. Through investigating three different sizes of Chinese ESCO - small, medium-sized and large - this paper provides a framework to present the idea that Chinese ESCOs' TC development is affected by four key internal and external capabilities: management capability, investment capability, innovation capability and linkage capability. Through comparative analysis, the paper establishes that small and medium-sized private ESCOs are mainly affected by investment and linkage capabilities. Large state-owned ESCOs are mainly affected by innovation and management capability. In addition, all three types of ESCO exhibit a strong desire to develop their technological capability, but small and medium-sized ESCOs exhibit a stronger desire to conduct research and development (R&D) than large ESCOs, whilst large ESCOs prefer to increase their technical reserves through acquisition. This paper identifies factors that affect Chinese ESCOs' TC, but it does intend to address the problem of how to reduce the negative effects of limited TC or the question of how to improve the TC development of Chinese ESCOs effectively. This paper contributes to the field of TC development in the ESCO industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The principal aim of this paper is to examine the criteria assisting in the selection of biomass for energy generation in Brazil. To reach the aim, this paper adopts case study and survey research methods to collect information from four biomass energy case companies and solicits opinions from experts. The data gathered are analysed in line with a wide range of related data, including selection criteria for biomass and its importance, energy policies in Brazil, availability of biomass feedstock in Brazil and its characteristics, as well as status quo of biomass-based energy in Brazil. The findings of the paper demonstrate that there are ten main criteria in biomass selection for energy generation in Brazil. They comprise geographical conditions, availability of biomass feedstock, demand satisfaction, feedstock costs and oil prices, energy content of biomass feedstock, business and economic growth, CO2 emissions of biomass end-products, effects on soil, water and biodiversity, job creation and local community support, as well as conversion technologies. Furthermore, the research also found that these main criteria cannot be grouped on the basis of sustainability criteria, nor ranked by their importance as there is correlation between each criterion such as a cause and effect relationship, as well as some overlapping areas. Consequently, this means that when selecting biomass more comprehensive consideration is advisable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.

As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.

To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.

To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.

Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.

The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.

Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Energy efficiency and user comfort have recently become priorities in the Facility Management (FM) sector. This has resulted in the use of innovative building components, such as thermal solar panels, heat pumps, etc., as they have potential to provide better performance, energy savings and increased user comfort. However, as the complexity of components increases, the requirement for maintenance management also increases. The standard routine for building maintenance is inspection which results in repairs or replacement when a fault is found. This routine leads to unnecessary inspections which have a cost with respect to downtime of a component and work hours. This research proposes an alternative routine: performing building maintenance at the point in time when the component is degrading and requires maintenance, thus reducing the frequency of unnecessary inspections. This thesis demonstrates that statistical techniques can be used as part of a maintenance management methodology to invoke maintenance before failure occurs. The proposed FM process is presented through a scenario utilising current Building Information Modelling (BIM) technology and innovative contractual and organisational models. This FM scenario supports a Degradation based Maintenance (DbM) scheduling methodology, implemented using two statistical techniques, Particle Filters (PFs) and Gaussian Processes (GPs). DbM consists of extracting and tracking a degradation metric for a component. Limits for the degradation metric are identified based on one of a number of proposed processes. These processes determine the limits based on the maturity of the historical information available. DbM is implemented for three case study components: a heat exchanger; a heat pump; and a set of bearings. The identified degradation points for each case study, from a PF, a GP and a hybrid (PF and GP combined) DbM implementation are assessed against known degradation points. The GP implementations are successful for all components. For the PF implementations, the results presented in this thesis find that the extracted metrics and limits identify degradation occurrences accurately for components which are in continuous operation. For components which have seasonal operational periods, the PF may wrongly identify degradation. The GP performs more robustly than the PF, but the PF, on average, results in fewer false positives. The hybrid implementations, which are a combination of GP and PF results, are successful for 2 of 3 case studies and are not affected by seasonal data. Overall, DbM is effectively applied for the three case study components. The accuracy of the implementations is dependant on the relationships modelled by the PF and GP, and on the type and quantity of data available. This novel maintenance process can improve equipment performance and reduce energy wastage from BSCs operation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The global prevalence of obesity in the older adult population is growing, an increasing concern in both the developed and developing countries of the world. The study of geriatric obesity and its management is a relatively new area of research, especially pertaining to those with elevated health risks. This review characterizes the state of science for this "fat and frail" population and identifies the many gaps in knowledge where future study is urgently needed. In community dwelling older adults, opportunities to improve both body weight and nutritional status are hampered by inadequate programs to identify and treat obesity, but where support programs exist, there are proven benefits. Nutritional status of the hospitalized older adult should be optimized to overcome the stressors of chronic disease, acute illness, and/or surgery. The least restrictive diets tailored to individual preferences while meeting each patient's nutritional needs will facilitate the energy required for mobility, respiratory sufficiency, immunocompentence, and wound healing. Complications of care due to obesity in the nursing home setting, especially in those with advanced physical and mental disabilities, are becoming more ubiquitous; in almost all of these situations, weight stability is advocated, as some evidence links weight loss with increased mortality. High quality interdisciplinary studies in a variety of settings are needed to identify standards of care and effective treatments for the most vulnerable obese older adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biofouling, the accumulation of biomolecules, cells, organisms and their deposits on submerged and implanted surfaces, is a ubiquitous problem across various human endeavors including maritime operations, medicine, food industries and biotechnology. Since several decades, there have been substantial research efforts towards developing various types of antifouling and fouling release approaches to control bioaccumulation on man-made surfaces. In this work we hypothesized, investigated and developed dynamic change of the surface area and topology of elastomers as a general approach for biofouling management. Further, we combined dynamic surface deformation of elastomers with other existing antifouling and fouling-release approaches to develop multifunctional, pro-active biofouling control strategies.

This research work was focused on developing fundamental, new and environment-friendly approaches for biofouling management with emphasis on marine model systems and applications, but which also provided fundamental insights into the control of infectious biofilms on biomedical devices. We used different methods (mechanical stretching, electrical-actuation and pneumatic-actuation) to generate dynamic deformation of elastomer surfaces. Our initial studies showed that dynamic surface deformation methods are effective in detaching laboratory grown bacterial biofilms and barnacles. Further systematic studies revealed that a threshold critical surface strain is required to debond a biofilm from the surface, and this critical strain is dependent on the biofilm mechanical properties including adhesion energy, thickness and modulus. To test the dynamic surface deformation approach in natural environment, we conducted field studies (at Beaufort, NC) in natural seawater using pneumatic-actuation of silicone elastomer. The field studies also confirmed that a critical substrate strain is needed to detach natural biofilm accumulated in seawater. Additionally, the results from the field studies suggested that substrate modulus also affect the critical strain needed to debond biofilms. To sum up, both the laboratory and the field studies proved that dynamic surface deformation approach can effectively detach various biofilms and barnacles, and therefore offers a non-toxic and environmental friendly approach for biofouling management.

Deformable elastomer systems used in our studies are easy to fabricate and can be used as complementary approach for existing commercial strategies for biofouling control. To this end, we aimed towards developed proactive multifunctional surfaces and proposed two different approaches: (i) modification of elastomers with antifouling polymers to produce multifunctional, and (ii) incorporation of silicone-oil additives into the elastomer to enhance fouling-release performance.

In approach (i), we modified poly(vinylmethylsiloxane) elastomer surfaces with zwitterionic polymers using thiol-ene click chemistry and controlled free radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionalities. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. In approach (ii), we incorporated silicone-oil additives in deformable elastomer and studied synergistic effect of silicone-oils and surface strain on barnacle detachment. We hypothesized that incorporation of silicone-oil additive reduces the amount of surface strain needed to detach barnacles. Our experimental results supported the above hypothesis and suggested that surface-action of silicone-oils plays a major role in decreasing the strain needed to detach barnacles. Further, we also examined the effect of change in substrate modulus and showed that stiffer substrates require lower amount of strain to detach barnacles.

In summary, this study shows that (1) dynamic surface deformation can be used as an effective, environmental friendly approach for biofouling control (2) stretchable elastomer surfaces modified with anti-fouling polymers provides a pro-active, dual-mode approach for biofouling control, and (3) incorporation of silicone-oils additives into stretchable elastomers improves the fouling-release performance of dynamic surface deformation technology. Dynamic surface deformation by itself and as a supplementary approach can be utilized biofouling management in biomedical, industrial and marine applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of structural health monitoring of civil structures is ever expanding and by assessing the dynamical condition of structures, informed maintenance management can be conducted at both individual and network levels. With the continued growth of information age technology, the potential arises for smart monitoring systems to be integrated with civil infrastructure to provide efficient information on the condition of a structure. The focus of this thesis is the integration of smart technology with civil infrastructure for the purposes of structural health monitoring. The technology considered in this regard are devices based on energy harvesting materials. While there has been considerable focus on the development and optimisation of such devices using steady state loading conditions, their applications for civil infrastructure are less known. Although research is still in initial stages, studies into the uses associated with such applications are very promising. Through the use of the dynamical response of structures to a variety of loading conditions, the energy harvesting outputs from such devices is established and the potential power output determined. Through a power variance output approach, damage detection of deteriorating structures using the energy harvesting devices is investigated. Further applications of the integration of energy harvesting devices with civil infrastructure investigated by this research includes the use of the power output as a indicator for control. Four approaches are undertaken to determine the potential applications arising from integrating smart technology with civil infrastructure, namely • Theoretical analysis to determine the applications of energy harvesting devices for vibration based health monitoring of civil infrastructure. • Laboratory experimentation to verify the performance of different energy harvesting configurations for civil infrastructure applications. • Scaled model testing as a method to experimentally validate the integration of the energy harvesting devices with civil infrastructure. • Full scale deployment of energy harvesting device with a bridge structure. These four approaches validate the application of energy harvesting technology with civil infrastructure from a theoretical, experimental and practical perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few decades have seen rapid proliferation of hard artificial structures (e.g., energy infra-structure, aquaculture, coastal defences) in the marine environment: ocean sprawl. The replacement of natural, often sedimentary, substrata with hard substrata has altered the distribution of species, particularly non-indigenous species, and can facilitate the assisted migration of native species at risk from climate change. This has been likened to urbanization as a driver of global biotic homogenization in the marine environment—the process by which species invasions and extinctions increase the genetic, taxonomic, or functional similarity of communities at local, regional, and global scales. Ecological engineering research showed that small-scale engineering interventions can have a significant positive effect on the biodiversity of artificial structures, promoting more diverse and resilient communities on local scales. This knowledge can be applied to the design of multifunctional structures that provide a range of ecosystem services. In coastal regions, hybrid designs can work with nature to combine hard and soft approaches to coastal defence in a more environmentally sensitive manner. The challenge now is to manage ocean sprawl with the dual goal of supporting human populations and activities, simultaneously strengthening ecosystem resilience using an ecosystem- based approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Utilization of renewable energy sources and energy storage systems is increasing with fostering new policies on energy industries. However, the increase of distributed generation hinders the reliability of power systems. In order to stabilize them, a virtual power plant emerges as a novel power grid management system. The VPP has a role to make a participation of different distributed energy resources and energy storage systems. This paper defines core technology of the VPP which are demand response and ancillary service concerning about Korea, America and Europe cases. It also suggests application solutions of the VPP to V2G market for restructuring national power industries in Korea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The construction industry is responsible for 40% of European Union (EU) end-use emissions but addressing this is problematic, as evident from the performance gap between design intention and on-site energy performance. There is a lack of the expertise needed for low energy construction (LEC) in the UK as the complex work processes involved require ‘energy literacy’ of all construction occupations, high qualification levels, broad occupational profiles, integrated teamworking, and good communication . This research identifies the obstacles to meeting these requirements, the nature of the expertise needed to break down occupational divisions and bridge those interfaces where the main heat losses occur, and the transition pathway implied. Obstacles include a decline in the level, breadth and quality of construction vocational education and training (VET), the lack of a learning infrastructure on sites, and a fragmented employment structure. To overcome these and develop enhanced understanding of LEC requires a transformation of the existing structure of VET provision and construction employment and a new curriculum based on a broader concept of agency and backed by rigorous enforcement of standards. This can be achieved through a radical transition pathway rather than market-based solutions to a low carbon future for the construction sector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hotel chains have access to a treasure trove of “big data” on individual hotels’ monthly electricity and water consumption. Benchmarked comparisons of hotels within a specific chain create the opportunity to cost-effectively improve the environmental performance of specific hotels. This paper describes a simple approach for using such data to achieve the joint goals of reducing operating expenditure and achieving broad sustainability goals. In recent years, energy economists have used such “big data” to generate insights about the energy consumption of the residential, commercial, and industrial sectors. Lessons from these studies are directly applicable for the hotel sector. A hotel’s administrative data provide a “laboratory” for conducting random control trials to establish what works in enhancing hotel energy efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several studies have been undertaken or attempted by industry and academe to address the need for lodging industry carbon benchmarking. However, these studies have focused on normalizing resource use with the goal of rating or comparing all properties based on multivariate regression according to an industry-wide set of variables, with the result that data sets for analysis were limited. This approach is backward, because practical hotel industry benchmarking must first be undertaken within a specific location and segment.1 Therefore, the CHSB study’s goal is to build a representative database providing raw benchmarks as a base for industry comparisons.2 These results are presented in the CHSB2016 Index, through which a user can obtain the range of benchmarks for energy consumption, water consumption, and greenhouse gas emissions for hotels within specific segments and geographic locations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le Système Stockage de l’Énergie par Batterie ou Batterie de Stockage d’Énergie (BSE) offre de formidables atouts dans les domaines de la production, du transport, de la distribution et de la consommation d’énergie électrique. Cette technologie est notamment considérée par plusieurs opérateurs à travers le monde entier, comme un nouveau dispositif permettant d’injecter d’importantes quantités d’énergie renouvelable d’une part et d’autre part, en tant que composante essentielle aux grands réseaux électriques. De plus, d’énormes avantages peuvent être associés au déploiement de la technologie du BSE aussi bien dans les réseaux intelligents que pour la réduction de l’émission des gaz à effet de serre, la réduction des pertes marginales, l’alimentation de certains consommateurs en source d’énergie d’urgence, l’amélioration de la gestion de l’énergie, et l’accroissement de l’efficacité énergétique dans les réseaux. Cette présente thèse comprend trois étapes à savoir : l’Étape 1 - est relative à l’utilisation de la BSE en guise de réduction des pertes électriques ; l’Étape 2 - utilise la BSE comme élément de réserve tournante en vue de l’atténuation de la vulnérabilité du réseau ; et l’Étape 3 - introduit une nouvelle méthode d’amélioration des oscillations de fréquence par modulation de la puissance réactive, et l’utilisation de la BSE pour satisfaire la réserve primaire de fréquence. La première Étape, relative à l’utilisation de la BSE en vue de la réduction des pertes, est elle-même subdivisée en deux sous-étapes dont la première est consacrée à l’allocation optimale et le seconde, à l’utilisation optimale. Dans la première sous-étape, l’Algorithme génétique NSGA-II (Non-dominated Sorting Genetic Algorithm II) a été programmé dans CASIR, le Super-Ordinateur de l’IREQ, en tant qu’algorithme évolutionniste multiobjectifs, permettant d’extraire un ensemble de solutions pour un dimensionnement optimal et un emplacement adéquat des multiple unités de BSE, tout en minimisant les pertes de puissance, et en considérant en même temps la capacité totale des puissances des unités de BSE installées comme des fonctions objectives. La première sous-étape donne une réponse satisfaisante à l’allocation et résout aussi la question de la programmation/scheduling dans l’interconnexion du Québec. Dans le but de réaliser l’objectif de la seconde sous-étape, un certain nombre de solutions ont été retenues et développées/implantées durant un intervalle de temps d’une année, tout en tenant compte des paramètres (heure, capacité, rendement/efficacité, facteur de puissance) associés aux cycles de charge et de décharge de la BSE, alors que la réduction des pertes marginales et l’efficacité énergétique constituent les principaux objectifs. Quant à la seconde Étape, un nouvel indice de vulnérabilité a été introduit, formalisé et étudié ; indice qui est bien adapté aux réseaux modernes équipés de BES. L’algorithme génétique NSGA-II est de nouveau exécuté (ré-exécuté) alors que la minimisation de l’indice de vulnérabilité proposé et l’efficacité énergétique représentent les principaux objectifs. Les résultats obtenus prouvent que l’utilisation de la BSE peut, dans certains cas, éviter des pannes majeures du réseau. La troisième Étape expose un nouveau concept d’ajout d’une inertie virtuelle aux réseaux électriques, par le procédé de modulation de la puissance réactive. Il a ensuite été présenté l’utilisation de la BSE en guise de réserve primaire de fréquence. Un modèle générique de BSE, associé à l’interconnexion du Québec, a enfin été proposé dans un environnement MATLAB. Les résultats de simulations confirment la possibilité de l’utilisation des puissances active et réactive du système de la BSE en vue de la régulation de fréquence.