999 resultados para Endogenous selection
Resumo:
X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.
Resumo:
Q. Shen. Rough feature selection for intelligent classifiers. LNCS Transactions on Rough Sets, 7:244-255, 2007.
Resumo:
X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.
Resumo:
R. Jensen, 'Performing Feature Selection with ACO. Swarm Intelligence and Data Mining,' A. Abraham, C. Grosan and V. Ramos (eds.), Studies in Computational Intelligence, vol. 34, pp. 45-73. 2006.
Resumo:
Feature selection aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone, requiring no additional information. This chapter describes the fundamental ideas behind RST-based approaches and reviews related feature selection methods that build on these ideas. Extensions to the traditional rough set approach are discussed, including recent selection methods based on tolerance rough sets, variable precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly important in rough set feature selection. The chapter includes the latest developments in this area, including RST strategies based on hill-climbing, genetic algorithms and ant colony optimization.
Resumo:
R. Jensen and Q. Shen, 'Tolerance-based and Fuzzy-Rough Feature Selection,' Proceedings of the 16th International Conference on Fuzzy Systems (FUZZ-IEEE'07), pp. 877-882, 2007.
Resumo:
R. Jensen and Q. Shen, 'Webpage Classification with ACO-enhanced Fuzzy-Rough Feature Selection,' Proceedings of the Fifth International Conference on Rough Sets and Current Trends in Computing (RSCTC 2006), LNAI 4259, pp. 147-156, 2006.
Resumo:
C. Shang and Q. Shen. Aiding classification of gene expression data with feature selection: a comparative study. Computational Intelligence Research, 1(1):68-76.
Resumo:
Q. Shen and R. Jensen, 'Approximation-based feature selection and application for algae population estimation,' Applied Intelligence, vol. 28, no. 2, pp. 167-181, 2008. Sponsorship: EPSRC RONO: EP/E058388/1
Resumo:
Computational Intelligence and Feature Selection provides a high level audience with both the background and fundamental ideas behind feature selection with an emphasis on those techniques based on rough and fuzzy sets, including their hybridizations. It introduces set theory, fuzzy set theory, rough set theory, and fuzzy-rough set theory, and illustrates the power and efficacy of the feature selections described through the use of real-world applications and worked examples. Program files implementing major algorithms covered, together with the necessary instructions and datasets, are available on the Web.
Resumo:
Alexander, N.; Rhodes, M.; and Myers, H. (2007). International market selection: measuring actions instead of intentions. Journal of Services Marketing. 21(6), pp.424-434 RAE2008
Resumo:
Elliott, G. N., Worgan, H., Broadhurst, D. I., Draper, J. H., Scullion, J. (2007). Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biology & Biochemistry, 39 (11), 2888-2896. Sponsorship: BBSRC / NERC RAE2008
Resumo:
Space carving has emerged as a powerful method for multiview scene reconstruction. Although a wide variety of methods have been proposed, the quality of the reconstruction remains highly-dependent on the photometric consistency measure, and the threshold used to carve away voxels. In this paper, we present a novel photo-consistency measure that is motivated by a multiset variant of the chamfer distance. The new measure is robust to high amounts of within-view color variance and also takes into account the projection angles of back-projected pixels. Another critical issue in space carving is the selection of the photo-consistency threshold used to determine what surface voxels are kept or carved away. In this paper, a reliable threshold selection technique is proposed that examines the photo-consistency values at contour generator points. Contour generators are points that lie on both the surface of the object and the visual hull. To determine the threshold, a percentile ranking of the photo-consistency values of these generator points is used. This improved technique is applicable to a wide variety of photo-consistency measures, including the new measure presented in this paper. Also presented in this paper is a method to choose between photo-consistency measures, and voxel array resolutions prior to carving using receiver operating characteristic (ROC) curves.
Resumo:
As distributed information services like the World Wide Web become increasingly popular on the Internet, problems of scale are clearly evident. A promising technique that addresses many of these problems is service (or document) replication. However, when a service is replicated, clients then need the additional ability to find a "good" provider of that service. In this paper we report on techniques for finding good service providers without a priori knowledge of server location or network topology. We consider the use of two principal metrics for measuring distance in the Internet: hops, and round-trip latency. We show that these two metrics yield very different results in practice. Surprisingly, we show data indicating that the number of hops between two hosts in the Internet is not strongly correlated to round-trip latency. Thus, the distance in hops between two hosts is not necessarily a good predictor of the expected latency of a document transfer. Instead of using known or measured distances in hops, we show that the extra cost at runtime incurred by dynamic latency measurement is well justified based on the resulting improved performance. In addition we show that selection based on dynamic latency measurement performs much better in practice that any static selection scheme. Finally, the difference between the distribution of hops and latencies is fundamental enough to suggest differences in algorithms for server replication. We show that conclusions drawn about service replication based on the distribution of hops need to be revised when the distribution of latencies is considered instead.
Resumo:
Replication is a commonly proposed solution to problems of scale associated with distributed services. However, when a service is replicated, each client must be assigned a server. Prior work has generally assumed that assignment to be static. In contrast, we propose dynamic server selection, and show that it enables application-level congestion avoidance. To make dynamic server selection practical, we demonstrate the use of three tools. In addition to direct measurements of round-trip latency, we introduce and validate two new tools: bprobe, which estimates the maximum possible bandwidth along a given path; and cprobe, which estimates the current congestion along a path. Using these tools we demonstrate dynamic server selection and compare it to previous static approaches. We show that dynamic server selection consistently outperforms static policies by as much as 50%. Furthermore, we demonstrate the importance of each of our tools in performing dynamic server selection.