982 resultados para Electronically controlled air suspension
Resumo:
In this paper, we present Dynamic Voltage and Frequency Managed 256 x 64 SRAM block in 65nm technology, for frequency ranging from 100MHz to 1GHz. The total energy is minimized for any operating frequency in the above range and leakage energy is minimized during standby mode. Since noise margin of SRAM cell deteriorates at low voltages, we propose Static Noise Margin improvement circuitry, which symmetrizes the SRAM cell by controlling the body bias of pull down NMOS transistor. We used a 9T SRAM cell that isolates Read and Hold Noise Margin and has less leakage. We have implemented an efficient technique of pushing address decoder into zigzag-super-cut-off in stand-by mode without affecting its performance in active mode of operation. The Read Bit Line (RBL) voltage drop is controlled and pre-charge of bit lines is done only when needed for reducing power wastage.
Resumo:
Oriented, single-crystalline, one-dimensional (1D) TiO2 nanostructures would be most desirable for providing fascinating properties and features, such as high electron mobility or quantum confinement effects, high specific surface area, and even high mechanical strength, but achieving these structures has been limited by the availability of synthetic techniques. In this study, a concept for precisely controlling the morphology of 1D TiO2 nanostructures by tuning the hydrolysis rate of titanium precursors is proposed. Based on this innovation, oriented 1D rutile TiO2 nanostructure arrays with continually adjustable morphologies, from nanorods (NRODs) to nanoribbons (NRIBs), and then nanowires (NWs), as well as the transient state morphologies, were successfully synthesized. The proposed method is a significant finding in terms of controlling the morphology of the 1D TiO2 nano-architectures, which leads to significant changes in their band structures. It is worth noting that the synthesized rutile NRIBs and NWs have a comparable bandgap and conduction band edge height to those of the anatase phase, which in turn enhances their photochemical activity. In photovoltaic performance tests, the photoanode constructed from the oriented NRIB arrays possesses not only a high surface area for sufficient dye loading and better light scattering in the visible light range than for the other morphologies, but also a wider bandgap and higher conduction band edge, with more than 200% improvement in power conversion efficiency in dye-sensitized solar cells (DSCs) compared with NROD morphology.
Resumo:
The surface chemistry and dispersion properties of aqueous Ti 3AlC2 suspension were studied in terms of hydrolysis, adsorption, electrokinetic, and rheological measurements. The Ti 3AlC2 particle had complex surface hydroxyl groups, such as ≡Ti-OH,=Al-OH, and -OTi-(OH)2, etc. The surface charging of the Ti3AlC2 particle and the ion environment of suspensions were governed by these surface groups, which thus strongly influenced the stability of Ti3AlC2 suspensions. PAA dispersant was added into the Ti3AlC2 suspension to depress the hydrolysis of the surface groups by the adsorption protection mechanism and to increase the stability of the suspension by the steric effect. Ti3AlC2 suspensions with 2.0 dwb% PAA had an excellent stability at pH=∼5 and presented the characteristics of Newtonian fluid. Based on the well-dispersed suspension, dense Ti3AlC2 materials were obtained by slip casting and after pressureless sintering. This work provides a feasible forming method for the engineering applications of MAX-phase ceramics, wherein complex shapes, large dimensions, or controlled microstructures are needed.
Resumo:
In this study, a well-dispersed γ-Y2Si2O 7 ethanol-based suspension with 30 vol% solid loading was prepared by adding 1 dwb% polyethylene imine dispersant, which allows feeble magnetic γ-Y2Si2O7 particles with anisotropic magnetic susceptibility to rotate in a 12 T strong magnetic field during slip casting, resulting in the development of a strong texture in green bodies. Pressureless sintering gives rise to more pronounced grain growth in the textured sample than in the untextured sample prepared without the magnetic field due to the rapid migration of the grain boundaries of the well-oriented grains, which was revealed by constant-heating-rate sintering kinetics. It was found that the use of two-step sintering is very efficient not only for inhibiting the grain growth but also for enhancing the texture. This implies that controlled grain growth is crucial for enhancing texture development in γ-Y2Si2O7.
Resumo:
Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.
Resumo:
Emissions of gases and particles from sea-faring ships have been shown to impact on the atmospheric chemistry and climate. To efficiently monitor and report these emissions found from a ship’s plume, the concept of using a multi-rotor or UAV to hover inside or near the exhaust of the ship to actively record the data in real time is being developed. However, for the required sensors obtain the data; their sensors must face into the airflow of the ships plume. This report presents an approach to have sensors able to read in the chemicals and particles emitted from the ship without affecting the flight dynamics of the multi-rotor UAV by building a sealed chamber in which a pump can take in the surrounding air (outside the downwash effect of the multi-rotor) where the sensors are placed and can analyse the gases safely. Results show that the system is small, lightweight and air-sealed and ready for flight test.
Resumo:
Dispersibility of colloidal barium titanate suspensions is reviewed with an emphasis on the use of various polyelectrolytes as dispersants. The fundamentals of colloidal stability are discussed followed by the colloidal properties of barium titanate powder. Dispersion behavior of BaTiO3 in both nonaqueous and aqueous media has been reviewed. Several studies on the stabilization of micron and nano-sized barium titanate using various polymeric dispersants and a rhamnolipid biosurfactant are presented and discussed. The article attempts to provide a comprehensive review of the current state-of-the-art in the area of colloidal processing of barium titanate.
Resumo:
With high-resolution photoemission spectroscopy measurements, the density of states (DOS) near the Fermi level (E-F) of double perovskite Sr2FeMoO6 having different degrees of Fe/Mo antisite disorder has been investigated with varying temperature. The DOS near E-F showed a systematic depletion with increasing degree of disorder, and recovered with increasing temperature. Altshuler-Aronov (AA) theory of disordered metals well explains the dependences of the experimental results. Scaling analysis of the spectra provides experimental indication for the functional form of the AA DOS singularity.
Resumo:
Silica nanotubes (SNTs) have been demonstrated here as a versatile host for controlled drug delivery and biosensing. The sol-gel template synthesized SNTs have a slow rate of drug release. Application of an external stimulus in the form of ultrasound to or chemical functionalization of synthesized SNT results in higher yield of drug release as well as yield of drug release varying linearly with time. In case of controlled drug delivery triggered by ultrasound, drug yield as function of time is found to be heavily dependent on the ultrasound impulse protocol. Impulses of shorter duration (similar to 0.5 min) and shorter time intervals between successive impulses resulted in higher drug yields. Confinement of hemoglobin (Hb) inside nanometer sized channels of SNT does not have any detrimental effect on the native protein structure and function. Observance of significant enhancement in direct electron transfer of Hb makes the SNTs also promising for application in biosensors.
Resumo:
Background Advances in cancer diagnosis and treatment have significantly improved survival rates, through their subsequent health needs are often not adequately addressed by current health services. National Health and Medical Research Council (NHMRC) Partnerships Project awarded a national collaborative project to develop, trial and evaluate clinical benefits and cost effectiveness of an e-health enabled structured health promotion intervention - The Women’s Wellness after Cancer Program (WWACP). The aim of this e-health enabled multimodal intervention is to improve health related quality of life in women previously treated for target cancers. Aim The WWACP is a 12-week web based, interactive, holistic program. Primary outcomes for this project are to promote a positive change in health-related quality of life (HRQoL) and reduction in Body Mass Index (BMI) in the women undertaking WWACP compared to women who receive usual care. Secondary outcomes include managing other side effects of cancer treatment through evidence-based nutrition and exercise practices, dealing with stress, sleep, menopause and sexuality issues. Methods The single-blinded multi-center randomized controlled trial recruited a toatl of 330 women within 24 months of completion of chemotherapy and /or radiotherapy. Women were randomly assigned to either a usual care or intervention group. Women provided with the intervention were provided with an interactive iBook and journal, web interface, and three virtual consultations by experienced cancer nurses. A variety of methods were utilized, to enable positive self- efficacy and lifestyle changes. These include online coaching with a registered nurse trained in the intervention, plus written educational and health promotional information. The program has been delivered through the e-health enabled interfaces, which enables virtual delivery via desktop and mobile computing devices. Importantly this enables accessibility for rural and regional women in Australia who are frequently geographically disadvantaged in terms of health care provision. Results Research focusing on alternative methods of delivering post treatment / or survivorship care in cancer utilizing web based interfaces is limited, but emerging evidence suggests that Internet interventions can increase psychological and physical wellbeing in cancer patients. The WWACP trial aims to establish the effectiveness of delivery of the program in terms of positive patient outcomes and cost effective, flexibility. The trial will be completed in September and results will be presented at the conference. Conclusions Women after acute hematological, breast and gynecological cancer treatments demonstrate good cancer survival rates and face residual health problems which are amenable to behavioral interventions. The conclusion of active treatment is a key 'teachable moment' in which sustainable positive lifestyle change can be achieved if patients receive education and psychological support which targets key treatment related health problems and known chronic disease risk factors.
Resumo:
A low temperature polyol process, based on glycolaldehyde mediated partial reduction of FeCl3 center dot 6H(2)O at 120 degrees C in the presence of sodium acetate as an alkali source and 2,2'-(ethylenedioxy)-bis-(ethylamine) as an electrostatic stabilizer has been used for the gram-scale preparation of biocompatible, water-dispersible, amine functionalized magnetite nanoparticles (MNPs) with an average diameter of 6 +/- 0.75 nm. With a reasonably high magnetization (37.8 e.m.u.) and amine groups on the outer surface of the nanoparticles, we demonstrated the magnetic separation and concentration implications of these ultrasmall particles in immunoassay. MRI studies indicated that these nanoparticles had the desired relaxivity for T-2 contrast enhancement in vivo. In vitro biocompatibility, cell uptake and MR imaging studies established that these nanoparticles were safe in clinical dosages and by virtue of their ultrasmall sizes and positively charged surfaces could be easily internalized by cancer cells. All these positive attributes make these functional nanoparticles a promising platform for further in vitro and in vivo evaluations.
Resumo:
Introduction Patients post sepsis syndromes have a poor quality of life and a high rate of recurring illness or mortality. Follow-up clinics have been instituted for patients postgeneral intensive care but evidence is sparse, and there has been no clinic specifically for survivors of sepsis. The aim of this trial is to investigate if targeted screening and appropriate intervention to these patients can result in an improved quality of life (Short Form 36 health survey (SF36V.2)), decreased mortality in the first 12 months, decreased readmission to hospital and/or decreased use of health resources. Methods and analysis 204 patients postsepsis syndromes will be randomised to one of the two groups. The intervention group will attend an outpatient clinic two monthly for 6 months and receive screening and targeted intervention. The usual care group will remain under the care of their physician. To analyse the results, a baseline comparison will be carried out between each group. Generalised estimating equations will compare the SF36 domain scores between groups and across time points. Mortality will be compared between groups using a Cox proportional hazards (time until death) analysis. Time to first readmission will be compared between groups by a survival analysis. Healthcare costs will be compared between groups using a generalised linear model. Economic (health resource) evaluation will be a within-trial incremental cost utility analysis with a societal perspective. Ethics and dissemination Ethical approval has been granted by the Royal Brisbane and Women’s Hospital Human Research Ethics Committee (HREC; HREC/13/QRBW/17), The University of Queensland HREC (2013000543), Griffith University (RHS/08/14/HREC) and the Australian Government Department of Health (26/2013). The results of this study will be submitted to peer-reviewed intensive care journals and presented at national and international intensive care and/or rehabilitation conferences.
Resumo:
In-flight collection of air, pre-cooling, liquefaction and separation of liquid oxygen (LOX) are key technologies for futuristic launch vehicles, Vortex tube technology is one of the few potential technologies for this application. Extensive studies have been carried out on straight and conical vortex tubes for developing vortex tube technology for high purity LOX separation. Studies show that 12mm. diameter conical vortex tube with L/D of 10 could achieve LOX purity of similar to 96% with separation efficiency of similar to 14% indicating that it is not possible to obtain both high LOX purity and high separation efficiency simultaneously in a single vortex tube. However, it is possible to achieve both high LOX purity and separation efficiency by staging of vortex tubes. LOX purity of 96% and separation efficiency of similar to 73.5% has been achieved for second stage vortex tube supplied with pre-cooled air having 60% oxygen purity. LOX purity has been further increased to 97% by applying controlled heating power over liquid oxygen flowing discharge surface of the vortex tube.