999 resultados para Electromagnetically Induced Transparency
Resumo:
Attempts to inhibit the recognition of soluble antigens by T lymphocytes using antibodies specific for the antigen in question have been uniformally unsuccessful, in contrast to the observed specific inhibition of antibody generation by B cells. One exception is the unique situation whereby anti-hapten antisera inhibit the T-cell proliferative responses observed when hapten-specific T lymphocytes or clones are cultured with hapten-derivatized cells or proteins. The inability to inhibit T-cell functions by antigen-specific antibodies has been interpreted in several ways: (1) T cells possess a different repertoire from B cells; (2) the antibodies tested recognize epitopes present on the native antigen, whereas T cells recognize non-native (processed) structures; (3) the antigenic determinant(s) recognized by T cells on the surface of antigen presenting cells are either not accessible to antibodies, or are present in low amounts. The development of antigen-specific T-cell clones and monoclonal antibodies both specific for the same antigenic determinants now allows this question to be investigated definitively. Here, we report for the first time the specific inhibition of antigen-induced T-cell clone proliferation by a monoclonal antibody directed against the relevant soluble protein antigen.
Resumo:
We determined NGF involvement in MMCs and colonic motor alterations in an ovalbumin (OVA)-induced gut dysfunction model in rats. Animals received OVA (6 weeks), with/without simultaneous K252a (TrkA antagonist) treatment. MMCs, rat mast cell protease II (RMCPII) levels and colonic contractility in vitro were assessed. OVA increased MMC density and RMCPII concentration. Spontaneous contractility was similar in both groups and inhibited by K252a. Carbachol responses were increased by OVA in a K252a-independent manner. NO-synthase inhibition increased spontaneous activity in OVA-treated animals in a K252a-dependent manner. These observations support an involvement of NGF in the functional changes observed in this model.
Resumo:
Over the last few years, we examined the anti-allergic properties of interleukin (IL)-10 in different models of inflammation in the mouse, as well as against IgE-dependent activation of mouse bone marrow-derived mast cells (BMMC). We showed that IL-10, concurrently administered with ovalbumin, inhibited inflammatory cell accumulation in the airways and in the peritoneal cavity of sensitized mice, as well as the accompanying cytokine release. IL-10 also blocked antigen-induced cytokine generation by IgE-stimulated BMMC. Together, these results identify a novel biological property of IL-10, as a cytokine with potent anti-allergic activities.
Resumo:
In the present work we review the existing evidence for a LPS-induced cytokine-mediated eosinophil accumulation in a model of acute inflammation. Intrathoracic administration of LPS into rodents (mice, rats or guinea pigs) induces a significant increase in the number of eosinophils recovered from the pleural fluid 24 hr later. This phenomenon is preceded by a neutrophil influx and accompanied by lymphocyte and monocyte accumulation. The eosinophil accumulation induced by LPS is not affected by inhibitors of cyclo or lipoxygenase nor by PAF antagonists but can be blocked by dexamethasone or the protein synthesis inhibitor cycloheximide. Transfer of cell-free pleural wash from LPS injected rats (LPS-PW) to naive recipient animals induces a selective eosinophil accumulation within 24 hr. The eosinophilotactic activity present on the LPS-PW has a molecular weight ranging between 10 and 50 kDa and its effect is abolished by trypsin digestion of the pleural wash indicating the proteic nature of this activity. The production of the eosinophilotactic activity depends on the interaction between macrophages and T-lymphocytes and its effect can not be blocked by anti-IL-5 monoclonal antibodies. Accumulated evidence suggest that the eosinophil accumulation induced by LPS is a consequence of a eosinophilotactic cytokine produced through macrophage and T-cell interactions in the site of a LPS-induced inflammatory reaction.
Antigen-induced pleural eosinophilia is suppressed in diabetic rats: role of corticosteroid hormones
Resumo:
Previous studies have evidenced for the existence of interactive regulatory mechanisms between insulin and steroid hormones in different systems. In this study, we have investigated whether endogenous corticosteroids could be implicated in the hyporeactivity to antigen challenge observed in sensitized diabetic rats. Alloxinated rats showed a long-lasting increase in the blood glucose levels and a reduction in the number of pleural mast cells at 48 and 72 hr, but not at 24 hr after alloxan administration. In parallel, they also showed a significant elevation in the plasma levels of corticosterone together with an increase in the adrenal/body weight ratio. Antigen-evoked eosinophil accumulation appeared significantly reduced in rats pretreated with dexamethasone as well as in those rendered diabetic 72 hr after alloxan. In the same way, naive animals treated with dexamethasone also responded with a significant decrease in the number of pleural mast cells. Interestingly, when sensitized diabetic rats were pretreated with the steroid antagonist RU 38486 a reversion of the reduction in the allergen-induced eosinophil accumulation was noted. We conclude that the down-regulation of the allergic inflammatory response in diabetic rats is close-related to reduction in mast cell numbers and over expression of endogenous corticosteroids.
Resumo:
Mycobacteria, specially Mycobacterium tuberculosis are among the micro-organisms that are increasing dramatically the number of infections with death, all over the world. A great number of animal experimental models have been proposed to investigate the mechanisms involved in the host response against these intracellular parasites. Studies of airway infection in guinea-pigs and rabbits, as well as, in mice intravenously infected with BCG have made an important contribution to our understanding of the virulence, pathogenesis and the immunology of mycobacterial infections. Although, there are few models to study the mechanisms of the initial inflammatory process induced by the first contact with the Mycobacteria, and the relevance of the acute generation of inflammatory mediators, cytokines and leukocyte infiltration to the development of the mycobacterial infection. In this work we reviewed our results obtained with a model of M. bovis BCG-induced pleurisy in mice, describing the mechanisms involved in the leukocyte influx induced by BCG at 24 hr. Different mechanisms appear to be related with the influx of neutrophils, eosinophils and mononuclear cells and distinct inflammatory mediators, cytokines and adhesion molecules are involved in the BCG-induced cell accumulation.
Resumo:
The effects of thyroid hormones on the nervous system are mediated by the presence of nuclear T3 receptors (NT3R). In this study, the expression of NT3R was investigated in spinal cord, dorsal root ganglia (DRG), or sciatic nerve of adult rats after immunostaining with a 2B3-NT3R monoclonal antibody which recognizes both alpha and beta types of NT3R. The specificity of this monoclonal antibody was confirmed by Western blots. The 2B3-NT3R monoclonal antibody recognized one band corresponding to a molecular weight of 57 kDa in extract of spinal cord or DRG. No staining was observed on immunoblot of intact sciatic nerve. In the spinal cord, the nuclei of the neurons and glial cells including both astrocytes and oligodendrocytes exhibited 2B3-NT3R immunoreactivity. While all the nuclei of the DRG sensory neurons expressed the NT3R, all the nuclei of the satellite and Schwann cells were devoid of any immunoreaction. In the sciatic nerve, the nuclei of the Schwann cells also lacked 2B3-NT3R-immunoreactivity. After sciatic nerve transection in vivo, Schwann cell nuclei, which never expressed NT3R in intact nerves of adult rats, displayed a clear 2B3-NT3R immunoreaction in proximal and distal stumps adjacent to the section. Double immunostaining with antibodies raised to 3-sulfogalactosylceramide or S100 confirmed that most of the NT3R containing nuclei belong to Schwann cells. In dissociated cell cultures grown in vitro from sciatic nerves, Schwann cells exhibited 2B3-NT3R immunoreactivity. These data suggest that the inhibition of NT3R expression in Schwann cells ensheathing axons in intact nerve is reversed when the axons are degenerating or lacking.(ABSTRACT TRUNCATED AT 250 WORDS)
Protective immunity induced in mice by F8.1 and F8.2 antigens purified from Schistosoma mansoni eggs
Resumo:
Schistosoma mansoni soluble egg antigens (SEA) were fractionated by isoelectric focusing, resulting in 20 components, characterized by pH, absorbance and protein concentration. The higher absorbance fractions were submitted to electrophoresis, and fraction 8 (F8) presented a specific pattern of bands on its isoelectric point. Protein 3 was observed only on F8, and so, it was utilized to rabbit immunization, in order to evaluate its capacity of inducing protective immunity. IgG antibodies from rabbit anti-F8 serum were coupled to Sepharose, and used to obtain the specific antigen by affinity chromatography. This antigen, submitted to electrophoresis, presented two proteic bands (F8.1 and F8.2), which were transferred to nitrocellulose membrane (PVDF) and sequenciated. The homology of F8.2 to known proteins was determined using the Basic Local Alignment Search Tool program (BLASTp). Significant homologies were obtained for the rabbit cytosolic Ca2+ uptake inhibitor, and for the bird a1-proteinase inhibitor. Immunization of mice with F8.1 and F8.2, in the presence of Corynebacterium parvum and Al(OH)3 as adjuvant, induced a significant protection degree against challenge infection, as observed by the decrease on worm burden recovered from portal system.
Resumo:
Increased resting energy expenditure and malnutrition are frequently observed in patients with COPD. The aim of this study was to examine the possible contribution of an increased diet-induced thermogenesis (DIT) to weight loss. Eleven patients with COPD in stable clinical state and 11 healthy control subjects were studied. Resting energy expenditure (REE) was measured by standard methods of indirect calorimetry, using a ventilated canopy. Premeal REE was measured after an overnight fast. All subjects then received a balanced liquid test meal with a caloric content that was 0.3 times their REE extrapolated to 24 h. Diet-induced thermogenesis was measured over 130 min. Premeal REE was 109.9 +/- 11.7% of predicted values in the COPD group and 97.5 +/- 9.6% of predicted in the control group (p < 0.01). Seventy minutes after the test meal, REE had increased by 18.8 +/- 8.5% in the COPD group and by 15.1 +/- 5.8% in the control group (NS). After 130 min, REE had increased by 16.4 +/- 7.1% in the COPD group and by 12.4 +/- 5.3% in the control group (NS). The DIT expressed as a percentage of the caloric content of the meal was 4.3 +/- 1.6% in the COPD group and 3.3 +/- 1.4% in the control group (NS). We conclude that patients with stable COPD, although hypermetabolic at rest, do not show an increased DIT.
Resumo:
Accumulating evidence suggests that changes in the metabolic signature of astrocytes underlie their response to neuroinflammation, but how proinflammatory stimuli induce these changes is poorly understood. By monitoring astrocytes following acute cortical injury, we identified a differential and region-specific remodeling of their mitochondrial network: while astrocytes within the penumbra of the lesion undergo mitochondrial elongation, those located in the core-the area invaded by proinflammatory cells-experience transient mitochondrial fragmentation. In brain slices, proinflammatory stimuli reproduced localized changes in mitochondrial dynamics, favoring fission over fusion. This effect was triggered by Drp1 phosphorylation and ultimately resulted in reduced respiratory capacity. Furthermore, maintenance of the mitochondrial architecture critically depended on the induction of autophagy. Deletion of Atg7, required for autophagosome formation, prevented the reestablishment of tubular mitochondria, leading to marked reactive oxygen species accumulation and cell death. Thus, our data reveal autophagy to be essential for regenerating astrocyte mitochondrial networks during inflammation.
Resumo:
An experimental model for acquired and congenital ocular toxoplasmosis as well as a model to induce experimental autoimmune uveitis (EAU) was investigated in Calomys callosus. Toxoplasma gondii, ME-49 strain, was used to infect males and pregnant- and not pregnant-females while S-antigen, a major glycoprotein of the retinal photoreceptor cell, was used to induce EAU. The ocular lesions elicited by T. gondii were characterized by the presence of cysts, free tachyzoites and inflammatory cells in the retina or related tissues. In the congenital form, 40% of the fetus presented ocular lesions, i.e., presence of cysts in the retina, vitreous, and extra-retinal tissues. In the acquired form, 75% of the females and 50% of the males presented unilateral ocular cysts both at 21 and 47 days post-infection. It was also demonstrated that S-antigen was not uveitogenic in the C. callosus model. No lesion was observed in the animals exclusively immunized with this retinal component, even when jacalin was used as additional adjuvant for polyclonal response to the retinal antigen. It can be concluded that C. callosus may constitute in a promising model for study both acquired and congenital ocular toxoplasmosis, particularly when it is important to make sure that a non autoimmune process is involved in the genesis of the ocular infection.