858 resultados para Earth movements.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Intradialytic exercise has been described to improve blood pressure stability and dialysis efficacy. However, comorbid conditions in the dialysis population often preclude the widespread use of active intradialytic exercise. Therefore, we investigated the effect of intradialytic transcutaneous muscle stimulation (TEMS) and passive cycling movements (PCMs) on blood pressure and dialysis efficacy in patients. STUDY DESIGN: Prospective, controlled, randomized, crossover investigation. SETTING ; PARTICIPANTS: Ten patients were randomly allocated to TEMS, PCMs, or no intervention (NI) for 9 consecutive dialysis sessions. INTERVENTION: Participants were studied with NI, PCMs using a motor-driven ergometer, and bilateral TEMS of the leg musculature. Individual dialysis prescriptions were unchanged during the investigation. OUTCOMES ; MEASUREMENTS: The effect of TEMS and PCMs on blood pressure and dialysis efficacy in patients was assessed. RESULTS: Mean blood pressure increased from 121/64 +/- 21/15 mm Hg with NI to 132/69 +/- 21/15 mm Hg (P < 0.001) during sessions with PCMs and 125/66 +/- 22/16 mm Hg (P < 0.05) during sessions with TEMS. Urea and phosphate removal during dialysis were significantly (P < 0.001) greater with TEMS (19.4 +/- 3.7 g/dialysis and 1,197 +/- 265 mg/dialysis) or PCMs (20.1 +/- 3.4 g/dialysis and 1,172 +/- 315 mg/dialysis) than with NI (15.1 +/- 3.9 g/dialysis and 895 +/- 202 mg/dialysis). Body weight, ultrafiltration, Kt/V, and increases in hemoglobin and albumin levels during dialysis did not differ among the NI, PCMs, and TEMS groups. LIMITATIONS: The study design does not allow extension of the findings to prolonged treatment. CONCLUSION: Future studies during longer observation periods will have to prove the persistence of these acute findings. Both TEMS and PCMs deserve future investigations in dialysis patients because they increase intradialytic blood pressure and facilitate urea and phosphate removal when applied short term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Historical accounts of revolutionary movements oftentimes occlude the pleasures of countering hegemony or criticize the “frivolity” of what is perceived to be non-political activities. However, turn of the century Finnish-American socialist theater clubs and early twentieth century Finnish-American communist halls and their uncounted social groups and activities prove to be a rich resource in reconsidering the importance of acknowledging and understanding the role that pleasure has played and should play in political protest. Finnish-American radical activities, especially those condemned already at the time as hall socialism, are important historical precedents to today’s alter-globalization student festivals and protest concerts, midnight raves

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used differential GPS measurements from a 13 station GPS network spanning the Santa Ana Volcano and Coatepeque Caldera to characterize the inter-eruptive activity and tectonic movements near these two active and potentially hazardous features. Caldera-forming events occurred from 70-40 ka and at Santa Ana/Izalco volcanoes eruptive activity occurred as recently as 2005. Twelve differential stations were surveyed for 1 to 2 hours on a monthly basis from February through September 2009 and tied to a centrally located continuous GPS station, which serves as the reference site for this volcanic network. Repeatabilities of the averages from 20-minute sessions taken over 20 hours or longer range from 2-11 mm in the horizontal (north and east) components of the inter-station baselines, suggesting a lower detection limit for the horizontal components of any short-term tectonic or volcanic deformation. Repeatabilities of the vertical baseline component range from 12-34 mm. Analysis of the precipitable water vapor in the troposphere suggests that tropospheric decorrelation as a function of baseline lengths and variable site elevations are the most likely sources of vertical error. Differential motions of the 12 sites relative to the continuous reference site reveal inflation from February through July at several sites surrounding the caldera with vertical displacements that range from 61 mm to 139 mm followed by a lower magnitude deflation event on 1.8-7.4 km-long baselines. Uplift rates for the inflationary period reach 300 mm/yr with 1σ uncertainties of +/- 26 – 119 mm. Only one other station outside the caldera exhibits a similar deformation trend, suggesting a localized source. The results suggest that the use of differential GPS measurements from short duration occupations over short baselines can be a useful monitoring tool at sub-tropical volcanoes and calderas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-saturated debris flows are among some of the most destructive mass movements. Their complex nature presents a challenge for quantitative description and modeling. In order to improve understanding of the dynamics of these flows, it is important to seek a simplified dynamic system underlying their behavior. Models currently in use to describe the motion of debris flows employ depth-averaged equations of motion, typically assuming negligible effects from vertical acceleration. However, in many cases debris flows experience significant vertical acceleration as they move across irregular surfaces, and it has been proposed that friction associated with vertical forces and liquefaction merit inclusion in any comprehensive mechanical model. The intent of this work is to determine the effect of vertical acceleration through a series of laboratory experiments designed to simulate debris flows, testing a recent model for debris flows experimentally. In the experiments, a mass of water-saturated sediment is released suddenly from a holding container, and parameters including rate of collapse, pore-fluid pressure, and bed load are monitored. Experiments are simplified to axial geometry so that variables act solely in the vertical dimension. Steady state equations to infer motion of the moving sediment mass are not sufficient to model accurately the independent solid and fluid constituents in these experiments. The model developed in this work more accurately predicts the bed-normal stress of a saturated sediment mass in motion and illustrates the importance of acceleration and deceleration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished. Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished.