904 resultados para Earth dams
Resumo:
High-speed solar wind streams modify the Earth's geomagnetic environment, perturbing the ionosphere, modulating the flux of cosmic rays into the Earth atmosphere, and triggering substorms. Such activity can affect modern technological systems. To investigate the potential for predicting the arrival of such streams at Earth, images taken by the Heliospheric Imager (HI) on the STEREO-A spacecraft have been used to identify the onsets of high-speed solar wind streams from observations of regions of increased plasma concentrations associated with corotating interaction regions, or CIRs. In order to confirm that these transients were indeed associated with CIRs and to study their average properties, arrival times predicted from the HI images were used in a superposed epoch analysis to confirm their identity in near-Earth solar wind data obtained by the Advanced Composition Explorer (ACE) spacecraft and to observe their influence on a number of salient geophysical parameters. The results are almost identical to those of a parallel superposed epoch analysis that used the onset times of the high-speed streams derived from east/west deflections in the ACE measurements of solar wind speed to predict the arrival of such streams at Earth, assuming they corotated with the Sun with a period of 27 days. Repeating the superposed epoch analysis using restricted data sets demonstrates that this technique can provide a timely prediction of the arrival of CIRs at least 1 day ahead of their arrival at Earth and that such advanced warning can be provided from a spacecraft placed 40° ahead of Earth in its orbit.
Resumo:
Land surface albedo is dependent on atmospheric state and hence is difficult to validate. Over the UK persistent cloud cover and land cover heterogeneity at moderate (km-scale) spatial resolution can also complicate comparison of field-measured albedo with that derived from instruments such as the Moderate Resolution Imaging Spectrometer (MODIS). A practical method of comparing moderate resolution satellite-derived albedo with ground-based measurements over an agricultural site in the UK is presented. Point measurements of albedo made on the ground are scaled up to the MODIS resolution (1 km) through reflectance data obtained at a range of spatial scales. The point measurements of albedo agreed in magnitude with MODIS values over the test site to within a few per cent, despite problems such as persistent cloud cover and the difficulties of comparing measurements made during different years. Albedo values derived from airborne and field-measured data were generally lower than the corresponding satellite-derived values. This is thought to be due to assumptions made regarding the ratio of direct to diffuse illumination used when calculating albedo from reflectance. Measurements of albedo calculated for specific times fitted closely to the trajectories of temporal albedo derived from both Systeme pour l'Observation de la Terre (SPOT) Vegetation (VGT) and MODIS instruments.
Resumo:
We present an approach for dealing with coarse-resolution Earth observations (EO) in terrestrial ecosystem data assimilation schemes. The use of coarse-scale observations in ecological data assimilation schemes is complicated by spatial heterogeneity and nonlinear processes in natural ecosystems. If these complications are not appropriately dealt with, then the data assimilation will produce biased results. The “disaggregation” approach that we describe in this paper combines frequent coarse-resolution observations with temporally sparse fine-resolution measurements. We demonstrate the approach using a demonstration data set based on measurements of an Arctic ecosystem. In this example, normalized difference vegetation index observations are assimilated into a “zero-order” model of leaf area index and carbon uptake. The disaggregation approach conserves key ecosystem characteristics regardless of the observation resolution and estimates the carbon uptake to within 1% of the demonstration data set “truth.” Assimilating the same data in the normal manner, but without the disaggregation approach, results in carbon uptake being underestimated by 58% at an observation resolution of 250 m. The disaggregation method allows the combination of multiresolution EO and improves in spatial resolution if observations are located on a grid that shifts from one observation time to the next. Additionally, the approach is not tied to a particular data assimilation scheme, model, or EO product and can cope with complex observation distributions, as it makes no implicit assumptions of normality.
Resumo:
Current methods for estimating vegetation parameters are generally sub-optimal in the way they exploit information and do not generally consider uncertainties. We look forward to a future where operational dataassimilation schemes improve estimates by tracking land surface processes and exploiting multiple types of observations. Dataassimilation schemes seek to combine observations and models in a statistically optimal way taking into account uncertainty in both, but have not yet been much exploited in this area. The EO-LDAS scheme and prototype, developed under ESA funding, is designed to exploit the anticipated wealth of data that will be available under GMES missions, such as the Sentinel family of satellites, to provide improved mapping of land surface biophysical parameters. This paper describes the EO-LDAS implementation, and explores some of its core functionality. EO-LDAS is a weak constraint variational dataassimilationsystem. The prototype provides a mechanism for constraint based on a prior estimate of the state vector, a linear dynamic model, and EarthObservationdata (top-of-canopy reflectance here). The observation operator is a non-linear optical radiative transfer model for a vegetation canopy with a soil lower boundary, operating over the range 400 to 2500 nm. Adjoint codes for all model and operator components are provided in the prototype by automatic differentiation of the computer codes. In this paper, EO-LDAS is applied to the problem of daily estimation of six of the parameters controlling the radiative transfer operator over the course of a year (> 2000 state vector elements). Zero and first order process model constraints are implemented and explored as the dynamic model. The assimilation estimates all state vector elements simultaneously. This is performed in the context of a typical Sentinel-2 MSI operating scenario, using synthetic MSI observations simulated with the observation operator, with uncertainties typical of those achieved by optical sensors supposed for the data. The experiments consider a baseline state vector estimation case where dynamic constraints are applied, and assess the impact of dynamic constraints on the a posteriori uncertainties. The results demonstrate that reductions in uncertainty by a factor of up to two might be obtained by applying the sorts of dynamic constraints used here. The hyperparameter (dynamic model uncertainty) required to control the assimilation are estimated by a cross-validation exercise. The result of the assimilation is seen to be robust to missing observations with quite large data gaps.
Resumo:
The necessity and benefits for establishing the international Earth-system Prediction Initiative (EPI) are discussed by scientists associated with the World Meteorological Organization (WMO) World Weather Research Programme (WWRP), World Climate Research Programme (WCRP), International Geosphere–Biosphere Programme (IGBP), Global Climate Observing System (GCOS), and natural-hazards and socioeconomic communities. The proposed initiative will provide research and services to accelerate advances in weather, climate, and Earth system prediction and the use of this information by global societies. It will build upon the WMO, the Group on Earth Observations (GEO), the Global Earth Observation System of Systems (GEOSS) and the International Council for Science (ICSU) to coordinate the effort across the weather, climate, Earth system, natural-hazards, and socioeconomic disciplines. It will require (i) advanced high-performance computing facilities, supporting a worldwide network of research and operational modeling centers, and early warning systems; (ii) science, technology, and education projects to enhance knowledge, awareness, and utilization of weather, climate, environmental, and socioeconomic information; (iii) investments in maintaining existing and developing new observational capabilities; and (iv) infrastructure to transition achievements into operational products and services.
Resumo:
The Metafor project has developed a common information model (CIM) using the ISO19100 series for- malism to describe numerical experiments carried out by the Earth system modelling community, the models they use, and the simulations that result. Here we describe the mechanism by which the CIM was developed, and its key properties. We introduce the conceptual and application ver- sions and the controlled vocabularies developed in the con- text of supporting the fifth Coupled Model Intercomparison Project (CMIP5). We describe how the CIM has been used in experiments to describe model coupling properties and de- scribe the near term expected evolution of the CIM.
Resumo:
We diagnose forcing and climate feedbacks in benchmark sensitivity experiments with the new Met Office Hadley Centre Earth system climate model HadGEM2-ES. To identify the impact of newly-included biogeophysical and chemical processes, results are compared to a parallel set of experiments performed with these processes switched off, and different couplings with the biogeochemistry. In abrupt carbon dioxide quadrupling experiments we find that the inclusion of these processes does not alter the global climate sensitivity of the model. However, when the change in carbon dioxide is uncoupled from the vegetation, or when the model is forced with a non-carbon dioxide forcing – an increase in solar constant – new feedbacks emerge that make the climate system less sensitive to external perturbations. We identify a strong negative dust-vegetation feedback on climate change that is small in standard carbon dioxide sensitivity experiments due to the physiological/fertilization effects of carbon dioxide on plants in this model.
Resumo:
There have been two kinds of study of ancient beliefs in the earlier prehistory of Scandinavia. One considers the impact of ideas which originated further to the south and east. It considers a cosmology based on the movements of the sun. A second tradition develops out of the ethnography of the circumpolar region and combines archaeological evidence with the beliefs of hunter-gatherers. It postulates the existence of a three-tier cosmology in which people could communicate between different worlds. This paper argues that certain elements that are thought to epitomize the ‘Southern’ system might have been suggested by existing ideas within Scandinavia itself. Both sets of beliefs came to influence one another, but they became increasingly distinct towards the end of the Bronze Age. This paper reconsiders the rock carvings, metalwork and mortuary cairns of that period and the Iron Age in relation to the process of religious change.
Resumo:
Data quality is a difficult notion to define precisely, and different communities have different views and understandings of the subject. This causes confusion, a lack of harmonization of data across communities and omission of vital quality information. For some existing data infrastructures, data quality standards cannot address the problem adequately and cannot fulfil all user needs or cover all concepts of data quality. In this study, we discuss some philosophical issues on data quality. We identify actual user needs on data quality, review existing standards and specifications on data quality, and propose an integrated model for data quality in the field of Earth observation (EO). We also propose a practical mechanism for applying the integrated quality information model to a large number of datasets through metadata inheritance. While our data quality management approach is in the domain of EO, we believe that the ideas and methodologies for data quality management can be applied to wider domains and disciplines to facilitate quality-enabled scientific research.