921 resultados para Earth,Age of.
Resumo:
Weight records of Brazilian Nelore cattle, from birth to 630 d of age, recorded every 3 mo, were analyzed using random regression models. Independent variables were Legendre polynomials of age at recording. The model of analysis included contemporary groups as fixed effects and age of dam as a linear and quadratic covariable. Mean trends were modeled through a cubic regression on orthogonal polynomials of age. Up to four sets of random regression coefficients were fitted for animals' direct and maternal, additive genetic, and permanent environmental effects. Changes in measurement error variances with age were modeled through a variance function. Orders of polynomial fit from three to six were considered, resulting in up to 77 parameters to be estimated. Models fitting random regressions modeled the pattern of variances in the data adequately, with estimates similar to those from corresponding univariate analysis. Direct heritability estimates decreased after birth and tended to be lowest at ages at which maternal effect estimates tended to be highest. Maternal heritability estimates increased after birth to a peak around 110 to 120 d of age and decreased thereafter. Additive genetic direct correlation estimates between weights at standard ages (birth, weaning, yearling, and final weight) were moderate to high and maternal genetic and environmental correlations were consistently high.
Resumo:
Background. The retromolar canal (RMC) is an anatomical variation that can cause complications in dental procedures. Method. The RMC was evaluated according to age, sex, and presence of accessory mandibular canal and accessory mental foramen, on both sides in 500 panoramic radiographs, belonging to individuals at the age of 7 to 20 years. The associations of interest were studied through Fisher's Exact Test and Pearson's Chi-Square Test, and the correlation was studied through Pearson's Correlation Coefficient (r). The significance level used was 5%. Results. The RMC was observed in 44 radiographs (8.8%), and out of those 24 were females. There was no statistically significant association between the RMC and age (p > 0.05; Fisher's Exact Test), sex (p = 0.787; Pearson's Chi-Square Test), amount of mandibular canals and mental foramina, on both sides (p > 0.05; Pearson's Chi-Square Test). There was a significant association between RMC and side, the higher frequency of the canal being on the right side (p < 0.05; Fisher's Exact Test). Conclusions. Despite the low occurrence of the RMC, its identification and the verification of its dimensions and path are relevant, mainly in cases when anesthetic and surgical procedures can present failures or difficulties.
Resumo:
Subduction zones are one of the most characteristic features of planet Earth. Convergent plate junctions exert enormous influence on the formation and recycling of continental crust, and they are also responsible for major mineral resources and earthquakes, which are of crucial importance for society. A subduction-related geologic unit containing high-pressure rocks occurs in the Barragan area (Valle del Cauca Department) on the western flank of the Central Cordillera of the Colombian Andes. Blueschists and amphibolites, serpentinized meta-ultramafic rocks, graphite-chlorite-muscovite-quartz schists, protocataclasites, and graphite-chlorite-andalusite-andesine-garnet-muscovite +/- titanite schists are exposed in this region. In spite of the petrotectonic importance of blueschists, the high-pressure metamorphism of the Central Cordillera of Colombia has been rarely studied. New geochemical data indicate that protoliths of the blueschist- and amphibolite-facies rocks possessed normal mid-ocean ridge basalt bulk compositions. Ar-40/Ar-39 geochronology for a metapelite rock associated with the blueschists shows a plateau age of similar to 120 million years. We suggest that high-P/T conditions were present from similar to 150 to 125 Ma, depending on the model of generation and exhumation considered.
Resumo:
Forensic age estimation is an important element of anthropological research, as it produces one of the primary sources of data that researchers use to establish the identity of a person living or the identity of unknown bodily remains. The aim of this study was to determine if the chronology of third molar mineralization could be an accurate indicator of estimated age in a sample Brazilian population. If so, mineralization could determine the probability of an individual being 18 years or older. The study evaluated 407 panoramic radiographs of males and females from the past 5 years in order to assess the mineralization status of the mandibular third molars. The evaluation was carried out using an adaptation of Demirjian's system. The results indicated a strong correlation between chronological age and the mineralization of the mandibular third molars. The results indicated that modern Brazilian generation tends to demonstrate an earlier mandibular third molar mineralization than older Brazilian generation and people of other nationalities. Males reached developmental stages slightly earlier than females, but statistically significant differences between the sex were not found. The probability that an individual with third molar mineralization stage H had reached an age of 18 years or older was 96.8-98.6% for males and females, respectively. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Aims. We report the discovery of CoRoT-16b, a low density hot jupiter that orbits a faint G5V star (mV = 15.63) in 5.3523 +/- 0.0002 days with slight eccentricity. A fit of the data with no a priori assumptions on the orbit leads to an eccentricity of 0.33 +/- 0.1. We discuss this value and also derive the mass and radius of the planet. Methods. We analyse the photometric transit curve of CoRoT-16 given by the CoRoT satellite, and radial velocity data from the HARPS and HIRES spectrometers. A combined analysis using a Markov chain Monte Carlo algorithm is used to get the system parameters. Results. CoRoT-16b is a 0.535 -0.083/+0.085 M-J, 1.17 -0.14/+0.16 R-J hot Jupiter with a density of 0.44 -0.14/+0.21 g cm(-3). Despite its short orbital distance (0.0618 +/- 0.0015 AU) and the age of the parent star (6.73 +/- 2.8 Gyr), the planet orbit exhibits significantly non-zero eccentricity. This is very uncommon for this type of objects as tidal effects tend to circularise the orbit. This value is discussed taking into account the characteristics of the star and the observation accuracy.
Resumo:
Basalts of the Parana continental flood basalt (PCFB) province erupted through dominantly Proterozoic continental crust during the Cretaceous. In order to examine the mantle source(s) of this major flood basalt province, we studied Os, Sr, Nd, and Pb isotope systematics, and highly siderophile element (HSE) abundances in tholeiitic basalts that were carefully chosen to show the minimal effects of crustal contamination. These basalts define a precise Re-Os isochron with an age of 131.6 +/- 2.3 Ma and an initial Os-187/Os-188 of 0.1295 +/- 0.0018 (gamma Os-187 = +2.7 +/- 1.4). This initial Os isotopic composition is considerably more radiogenic than estimates of the contemporary Depleted Mantle (DM). The fact that the Re-Os data define a well constrained isochron with an age similar to Ar-40/Ar-39 age determinations, despite generally low Os concentrations, is consistent with closed-system behavior for the HSE. Neodymium, Sr, and Pb isotopic data suggest that the mantle source of the basalts had been variably hybridized by melts derived from enriched mantle components. To account for the combined Os, Nd, Sr, and Pb isotopic characteristics of these rocks, we propose that the primary melts formed from metasomatized asthenospheric mantle (represented by arc-mantle peridotite) that underwent mixing with two enriched components, EM-I and EM-II. The different enriched components are reflected in minor isotopic differences between basalts from southern and northern portions of the province. The Tristan da Cunha hotspot has been previously suggested to be the cause of the Parana continental flood basalt magmatism. However, present-day Tristan da Cunha lavas have much higher Os-187/Os-188 isotopic compositions than the source of the PCFB. These data, together with other isotopic and elemental data, preclude making a definitive linkage between the Tristan plume and the PCFB. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Objectives To analyse demographic and clinical variables in patients with disease onset before and after 40, 45 and 50 years in a large series of Brazilian SpA patients. Methods A common protocol of investigation was prospectively applied to 1424 SpA patients in 29 centres distributed through the main geographical regions in Brazil. The mean age at disease onset was 28.56 +/- 12.34 years, with 259 patients (18.2%) referring disease onset after 40 years, 15.1 (10.6%) after 45 years and 81 (5.8%) after 50 years. Clinical and demographic variables and disease indices (BASDAI, BASFI, BASRI, MASES, ASQoL) were investigated. Ankylosing spondylitis was the most frequent disease (66.3%), followed by psoriatic arthritis (18%), undifferentiated SpA (6.7%), reactive arthritis (5.5%), and enteropathic arthritis (3.5%). Results Comparing the groups according to age of disease onset, those patients with later onset presented statistical association with female gender, peripheral arthritis, dactylitis, nail involvement and psoriasis, as well as negative statistical association with inflammatory low hack pain, alternating buttock pain, radiographic sacroiliitis, hip involvement, positive familial history, HLA-B27 and uveitis. BASDAI, BASFI and quality of life, as well as physicians and patient's global assessment, were similar in all the groups. Radiographic indices showed worse results in the younger age groups. Conclusion There are two different clinical patterns in SpA defined by age at disease onset: one with predominance of axial symptoms in the group with disease onset <= 40 years and another favouring the peripheral manifestations in those with later disease onset.
Resumo:
In dieser Arbeit werden geochronologische und isotopen-geochemische Daten zur Entwicklung der Zentralen Westlichen Karpathen präsentiert. Die Karpathen bilden die östliche Fortsetzung der Alpen und können in drei Alpine Grundgebirgsdecken unterteilt werden, von denen zwei, die Veporische und die Gemerische, bearbeitet wurden. In der Veporischen Einheit wurden polymetamorphe Grundgebirgseinheiten untersucht, um deren genaue Altersstellung zu definieren und sie isotopengeochemisch zu klassifizieren. Dagegen wurde in der der Gemerischen Einheit, welche die Veporische Einheit überlagert, ein spezialisierter S-Typ Granit im Detail untersucht, um die petrogenetischen Prozesse, die zur magmatischen Entwicklung dieses Granits geführt haben, zu identifizieren. U-Pb Datierungen an Zirkonen der Veporischen Grundgebirgseinheiten zeigen für die gesamte Veporische Einheit ordovizische Entsehungsalter an (440-470 Ma). Diese Datierungen revidieren publizierte kambrische Entstehungsalter dieses Grundgebirges. Die Isotopensignatur (epsilon Nd und 87Sr/86Sr) der ordovizischen Grundgebirgseinheiten, bestehend aus stark überprägten Amphiboliten und Gneissen, ist von der Signatur der sich im Norden anschliessenden Tatrischen Einheit gut unterscheidbar. Die Bleiisotopenzusammensetzung dieser Gesteine ist stark krustal geprägt und überschneidet sich mit der der Tatrischen Einheit. Zusammen mit den T-DM Altern sind diese Einheiten vergleichbar mit prävariskischen Einheiten der Alpen. Somit kann das ordovizische Grundgebirge zu den peri-Gondwana Terranen gezählt werden, die an einem aktiven Kontinentalrand im Norden von Gondwana gebildet wurden. In den Gesteinen der Veporischen Einheit wurde im Weiteren eine starke metamorphe überprägung und intensiver felsischer Magmatismus karbonischen Alters erkannt (320-350 Ma). Dieses Ereignis ist zeitgleich mit dem Magmatismus, welcher hauptsächlich in der sich im Norden anschliessenden Tatrischen Einheit beobachtet wird. Dieser gehört der variskischen Orogenese an. Intensive alpine Deformation und Metamorphose konnte in der südlichen Veporischen Einheit anhand der Einzelzirkondatierungen und der Isotopendaten der ordovizischen Einheiten nachgewiesen werden. Am Dlha Dolina Granit in der Gemerischen Einheit können starke Fraktionierungs- und Auto-Metasomatose-Effekte beobachtet werden. Durch die magmatische Fraktionierung wird eine Anreicherung der SEE erzeugt, wogegen die Metasomatose die SEE stark verarmt. Es kommt sogar zur Ausbildung eines Tetraden Effektes im SEE Muster, welche den starken Einfluss von Fluiden während der spät-magmatischen Phase belegt. Gesamtgesteins Pb-Pb Daten beschränken das minimale Intrusionsalter dieses Granites auf 240 Ma. Dieses Alter ist in guter übereinstimmung mit den Sr-Isotopendaten der magmatisch dominierten Gesteine, wohingegen die stark metasomatisch geprägten Gesteine ein zu radiogenes 87Sr/86Sri aufweisen. Während dieser Arbeit wurde intensiv mit der Blei-Isotopenzusammensetzung von Gesamtgesteinsproben gearbeitet. Um die Auswertung dieser Daten optimieren zu können wurde ein Computerscript für das GPL Programm Octave erstellt. Die Hauptaufgabe dieses Scripts besteht darin, Regressionen für geochronologische Anwendungen gemäss York (1969) zu berechnen. Ausserdem können mu und kappa-Werte für diese Regressionen berechnet und eine Hauptkomponentenanalyse, welche hilfreich für den Vergleich von zwei Datensätzen ist, durchgeführt werden. Am Ende der vorliegenden Arbeit wird die analytische Methode für einen Mikrowellen beschleunigten Säureaufschluss von granitoidem Material zur Bestimmung der Sr- und Nd-Isotopenzusammensetzung und der Elementkonzentrationen vorgestellt. Diese kombinierte Methode nutzt ein TIMS für die Sr und Nd Isotopenmessungen und eine Einzelkollektor-ICPMS zur Bestimmung der SEE, Rb und Sr Konzentrationen, welche mithilfe von relativen Sensitivitätsfaktoren gegenüber einem internen Standard quantifiziert werden. Diese Methode wird durch Messungen von internationalen Referenzmaterialien bewertet. Die Ergebnisse zeigen eine Reproduzierbarkeit von <10% für die Elementkonzentrationen und von <5% für Elementverhältnisse.
Resumo:
This thesis focusses on the tectonic evolution and geochronology of part of the Kaoko orogen, which is part of a network of Pan-African orogenic belts in NW Namibia. By combining geochemical, isotopic and structural analysis, the aim was to gain more information about how and when the Kaoko Belt formed. The first chapter gives a general overview of the studied area and the second one describes the basis of the Electron Probe Microanalysis dating method. The reworking of Palaeo- to Mesoproterozoic basement during the Pan-African orogeny as part of the assembly of West Gondwana is discussed in Chapter 3. In the study area, high-grade rocks occupy a large area, and the belt is marked by several large-scale structural discontinuities. The two major discontinuities, the Sesfontein Thrust (ST) and the Puros Shear Zone (PSZ), subdivide the orogen into three tectonic units: the Eastern Kaoko Zone (EKZ), the Central Kaoko Zone (CKZ) and the Western Kaoko Zone (WKZ). An important lineament, the Village Mylonite Zone (VMZ), has been identified in the WKZ. Since plutonic rocks play an important role in understanding the evolution of a mountain belt, zircons from granitoid gneisses were dated by conventional U-Pb, SHRIMP and Pb-Pb techniques to identify different age provinces. Four different age provinces were recognized within the Central and Western part of the belt, which occur in different structural positions. The VMZ seems to mark the limit between Pan-African granitic rocks east of the lineament and Palaeo- to Mesoproterozoic basement to the west. In Chapter 4 the tectonic processes are discussed that led to the Neoproterozoic architecture of the orogen. The data suggest that the Kaoko Belt experienced three main phases of deformation, D1-D3, during the Pan-African orogeny. Early structures in the central part of the study area indicate that the initial stage of collision was governed by underthrusting of the medium-grade Central Kaoko zone below the high-grade Western Kaoko zone, resulting in the development of an inverted metamorphic gradient. The early structures were overprinted by a second phase D2, which was associated with the development of the PSZ and extensive partial melting and intrusion of ~550 Ma granitic bodies in the high-grade WKZ. Transcurrent deformation continued during cooling of the entire belt, giving rise to the localized low-temperature VMZ that separates a segment of elevated Mesoproterozoic basement from the rest of the Western zone in which only Pan-African ages have so far been observed. The data suggest that the boundary between the Western and Central Kaoko zones represents a modified thrust zone, controlling the tectonic evolution of the Kaoko belt. The geodynamic evolution and the processes that generated this belt system are discussed in Chapter 5. Nd mean crustal residence ages of granitoid rocks permit subdivision of the belt into four provinces. Province I is characterised by mean crustal residence ages <1.7 Ga and is restricted to the Neoproterozoic granitoids. A wide range of initial Sr isotopic values (87Sr/86Sri = 0.7075 to 0.7225) suggests heterogeneous sources for these granitoids. The second province consists of Mesoproterozoic (1516-1448 Ma) and late Palaeo-proterozoic (1776-1701 Ma) rocks and is probably related to the Eburnian cycle with Nd model ages of 1.8-2.2 Ga. The eNd i values of these granitoids are around zero and suggest a predominantly juvenile source. Late Archaean and middle Palaeoproterozoic rocks with model ages of 2.5 to 2.8 Ga make up Province III in the central part of the belt and are distinct from two early Proterozoic samples taken near the PSZ which show even older TDM ages of ~3.3 Ga (Province IV). There is no clear geological evidence for the involvement of oceanic lithosphere in the formation of the Kaoko-Dom Feliciano orogen. Chapter 6 presents the results of isotopic analyses of garnet porphyroblasts from high-grade meta-igneous and metasedimentary rocks of the sillimanite-K-feldspar zone. Minimum P-T conditions for peak metamorphism were calculated at 731±10 °C at 6.7±1.2 kbar, substantially lower than those previously reported. A Sm-Nd garnet-whole rock errorchron obtained on a single meta-igneous rock yielded an unexpectedly old age of 692±13 Ma, which is interpreted as an inherited metamorphic age reflecting an early Pan-African granulite-facies event. The dated garnets survived a younger high-grade metamorphism that occurred between ca. 570 and 520 Ma and apparently maintained their old Sm-Nd isotopic systematics, implying that the closure temperature for garnet in this sample was higher than 730 °C. The metamorphic peak of the younger event was dated by electronmicroprobe on monazite at 567±5 Ma. From a regional viewpoint, it is possible that these granulites of igneous origin may be unrelated to the early Pan-African metamorphic evolution of the Kaoko Belt and may represent a previously unrecognised exotic terrane.
Resumo:
P-T conditions, paragenetic studies and the relation between mineral growth, deformation and - when possible- isograd minerals have been used to describe the type of metamorphism involved within lower units of the southern Menderes Massif of the Anatolide Belt in western Turkey. The study areas mainly consist of Proterozoic orthogneiss and surrounding schists of presumed Paleozoic age. Both units are seen as nappes in the southern study area, the Çine and the Selimiye nappe, on the whole corresponding to Proterozoic orthogneiss and surrounding schists, respectively. The Çine and Selimiye nappes are part of a complex geological structure within the core series of the Menderes Massif. Their emplacement under lower greenschist facies conditions, would result from closure of the northern Neo-Thethys branch during the Eocene. These two nappes are separated by a major tectonic structure, the Selimiye shear zone, which records top-to-the-S shearing under greenschist facies conditions. Amphibolite to upper amphibolite facies metamorphism is widely developed within the metasedimentary rocks of the Çine nappe whereas no metamorphism exceeding lower amphibolite facies has been observed in the Selimiye nappe. In the southern margin of the Çine Massif, around Selimiye and Millas villages, detailed sampling has been undertaken in order to map mineral isograds within the Selimiye nappe and to specify P-T conditions in this area. The data collected in this area reveals a global prograde normal erosion field gradient from south to north and toward the orthogneiss. The mineralogical parageneses and P-T estimates are correlated with Barrovian-type metamorphism. A jump of P-T conditions across the Selimiye shear zone has been identified and estimated c. 2 kbar and 100 °C which evidences the presence of amphibolite facies metasedimentary rocks near the orthogneiss. Metasedimentary rocks from the overlying Selimiye nappe have maximum P-T conditions of c. 4-5 kbar and c. 525 °C near the base of the nappe. Metasedimentary rocks from the Çine nappe underneath the Selimiye shear zone record maximum P-T conditions of about 7 kbar and >550 °C. Kinematic indicators in both nappes consistently show a top-S shear sense. Metamorphic grade in the Selimiye nappe decreases structurally upwards as indicated by mineral isograds defining the garnet-chlorite zone at the base, the chloritoid-biotite zone and the biotite-chlorite zone at the top of the nappe. The mineral isograds in the Selimiye nappe run parallel to the regional SR foliation. 40Ar/39Ar mica ages indicate an Eocene age of metamorphism in the Selimiye nappe and underneath the Çine nappe in this area. Metasedimentary rocks of the Çine nappe 20-30 km north of the Selimiye shear zone record maximum P-T conditions of 8-11 kbar and 600-650 °C. Kinematic indicators show mainly top-N shear sense associated with prograde amphibolite facies metamorphism. An age of about 550 Ma could be indicated for amphibolite facies metamorphism and associated top-N shear in the orthogneiss and metasedimentary rocks of the Çine nappe. However, there is no evidence for polymetamorphism in the 6 metasedimentary rocks of the Çine nappe, making tectonic interpretations about late Neoproterozoic to Cambrian and Tertiary metamorphic events speculative. In the western margin of the Çine Massif metamorphic mineral parageneses and pressure– temperature conditions lead to similar conclusion regarding the erosion field gradient, prograde normal toward the orthogneiss. The contact between orthogneiss and surrounding metasedimentary rocks is mylonitic and syn-metamorphism. P-T estimates are those already observed within the Selimiye nappe and correlated with lower amphibolite facies parageneses. Finally additional data in the eastern part and a general paragenetic study within the Menderes Massif lower units, the Çine and the Selimiye nappes, strongly suggest a single Barrovian-type metamorphism predating Eocene emplacement of the high pressure–low temperature Lycean and Cycladic blueschist nappes. Metamorphic mineral parageneses and pressure–temperature conditions do not support the recently proposed model of high pressure–low temperature metamorphic overprinting, which implies burial of the lower units of the Menderes Massif up to depth of 30 km, as a result of closure of the Neo-Tethys. According to the geochronological problem outlined during this thesis, there are two possible schemes: either Barrovian-type metamorphism is Proterozoic in age and part of the sediments from Selimiye nappe (lower amphibolite facies) has to be proterozoic of age too, or Barrovian-type metamorphism in Eocene of age. In the first case the structure observed now in the core series would correspond to simple exhumation of Proterozoic basement. In the latter case a possible correlation with closure of Neo-Tethys (sensu stricto, southern branch) is envisaged.
Resumo:
In the present thesis, the geochemistry, petrology and geochronology of ophiolite complexes from central northern Greece were studied in detail in order to gain insights on the petrogenetic pathways and geodynamic processes that lead to their formation and evolution. The major- and trace-element content of minerals and whole rocks from all four ophiolite complexes was determined using high-precision analytical equipment. These results were then coupled with Nd and Sr isotopic measurements. In order to precisely place the evolution of these ophiolites in time, U-Pb geochronology on zircons was conducted using a SHRIMP-II. The data obtained suggest that the ophiolites studied invariably show typical characteristics of subduction-zone magmatism (e.g. negative Nb anomalies, Th enrichment). In N-MORB-normalised multielement profiles the high field-strength elements display patterns that vary from depleted to N-MORB-like. Chondrite-normalised rare-earth element (REE) profiles show flat heavy-REE patterns suggesting a shallow regime of source melting for all the ophiolites, well within the stability field of spinel lherzolite. The majority of the samples have light-REE depleted patterns. 87Sr/86Sr isotopic ratios range from 0.703184 to 0.715853 and are in cases influenced by alteration. The εNd values are positive (the majority of the mafic samples is typically 7.1-3.1) but lower than N-MORB and depleted mantle. With the exception of the Thessaloniki ophiolite that has uniform island-arc tholeiitic chemical characteristics, the rest of the ophiolites show dual chemistry consisting of rocks with minor subduction-zone characteristics that resemble chemically back-arc basin basalts (BABB) and rocks with more pronounced subduction-zone characteristics. Tectonomagmatic discrimination schemes classify the samples as island-arc tholeiites and back-arc basin basalts or N-MORB. Melting modelling carried out to evaluate source properties and degree of melting verifies the dual nature of the ophiolites. The samples that resemble back-arc basin basalts require very small degrees of melting (<10%) of fertile sources, whereas the rest of the samples require higher degrees (25-15%) of melting. As deduced from the present geochemical and petrological investigation, the ophiolites from Guevguely, Oraeokastro, Thessaloniki, and Chalkidiki represent relics of supra-subduction zone crust that formed in succeeding stages of island-arc rifting and back-arc spreading as well as in a fore arc setting. The geochronological results have provided precise determination of the timing of formation of these complexes. The age of the Guevguely ophiolite has been determined as 167±1.2 Ma, that of Thessaloniki as 169±1.4 Ma, that of Kassandra as 167±2.2 Ma and that of Sithonia as 160±1.2 Ma.
Resumo:
Dunite, wehrlite and websterite xenoliths occur amongst a large abundance of mantle xenoliths in kimberlites of the Kimberley cluster in South Africa. Up to know they have mostly been neglected. On the basis of texture, major and trace elements, oxygen isotopes as well as Re-Os isotope characteristics, they can be subdivided into two groups. A coarse-grained mantle peridotite group, comprising dunite, wehrlite and websterite xenoliths, that are similar to fertile peridotites and represent upper mantle assemblages that are differently influenced by mantle metasomatism. And a cumulate group, containing fine-grained Fe-rich dunite xenoliths that represent cumulates of flood basalt magmatism related to ~183 Ma Karoo and ~2.7 Ga Ventersdorp events in southern Africa. Dunite, wehrlite and websterite xenoliths have preserved a complex history of melt depletion and metasomatic re-enrichment events, which gives information about the different re-enrichment stages of the subcratonic lithospheric mantle and the spatial differences within the Kaapvaal craton upper mantle. Websterite xenoliths comprise orthopyroxene (40-85 Vol. %), clinopyroxene (5-42 Vol. %), garnet (4-10 Vol. %) and subordinately olivine, while dunite and wehrlite xenoliths contain predominantly olivine (65-100 Vol %) and subordinately orthopyroxene, clinopyroxene and garnet. High melt depletion and a dunitic to harzburgitic protolith composition are reflected by high forsterite (Fo90-92) and high olivine NiO contents (2800-5000 ppm) and high orthopyroxene Mg# (Mg/(Mg+Fe)) of 0.91-0.93. Re-depletion ages of predominantly 2.9 Ga reflect a minimum age of melt depletion. Melt depletion ceased in conjunction with collision of the Kimberley block with the Witwatersrand block ~2.9 Ga ago. Subduction related re-fertilisation of the previously depleted mantle xenoliths is documented by i) amoeboid textured orthopyroxene, clinopyroxene and garnet, which crystallized in schlieren along olivine grain boundaries, ii) high whole-rock SiO2, Al2O3, CaO, TiO2, FeO contents, iii) low oxygen isotope ratios in clinopyroxene and garnet of 4.8-5.4 ‰ and 4.7-5.3 ‰, respectively and iv) trace element compositions of wehrlitic clinopyroxene and garnet in equilibrium with high-pressure partial melts of eclogite. Trace element disequilibrium of orthopyroxene with clinopyroxene and garnet indicates a separate origin for orthopyroxene, on one side as primary mantle orthopyroxene in dunite and wehrlite xenoliths and on the other side as reaction product with Si-rich melts produced by partial melting of eclogite. This reaction triggered replacement of olivine by orthopyroxene in the surrounding mantle and produced the typical Si-rich composition of Kaapvaal mantle peridotites. Partial melting of eclogite at higher temperatures produced a second metasomatic melt with lower SiO2, but higher Al2O3, CaO, FeO, Ti, Zr, Hf and a low oxygen isotope ratio. This melt triggered clinopyroxene and locally garnet and rutile crystallization in percolation veins, replacing olivine and orthopyroxene in the Kaapvaal upper mantle. Additionally, websterite xenoliths have experienced late stage cryptic metasomatism by the host kimberlite melt, changing the trace element composition of clinopyroxene, orthopyroxene and garnet to different extent. Hence websterite and most fertile lherzolite xenoliths have experienced three metasomatic events: i) reaction with high-Si melt, ii) percolation of subduction related silica melt with lower SiO2 content and iii) cryptic metasomatism by kimberlite. In contrast, dunite and wehrlite xenoliths have only experienced the second metasomatic event. They represent mantle lithologies further away from metasomatising agents. The Fe-rich dunites comprise olivine neoblasts with subordinate olivine porphyroclasts and parallel-orientated needles of ilmenite, which may enclose spinel. The lower forsterite and NiO contents of olivine in Fe-rich dunites compared to mantle peridotite xenoliths (Fo87-89 vs. Fo93-95 and 1300-2800ppm vs. 2200-3900 ppm, respectively), rules out a restitic origin. Cr-rich spinels are remnants of the original cumulate mineralogy that survived a late stage metasomatic overprint related to the production of the host kimberlite, producing ilmenite and phlogopite in some samples. Olivine porphyroclasts and neoblasts have different trace element compositions, the latter having high Ti, V, Cr and Ni and low Zn, Zr and Nb contents, indicating contrasting origins for neoblasts and porphyroclasts. The dunites have high 187Os/188Os ratios (0.11-0.15) indicating young (Phanerozoic) model ages for most samples, whereas three samples show isotopic mixtures between Phanerozoic neoblasts and ancient porphyroclastic material. Most Fe-rich dunite xenoliths can be interpreted as cumulates of fractional crystallization of Karoo magmatism, whereas the porphyroclasts are interpreted to be remnants from the much earlier Archaean Ventersdorp magmatism.
Resumo:
In this study two ophiolites and a mafic-ultramafic complexes of the northeastern Aegean Sea, Greece, have been investigated to re-evaluate their petrogenetic evolution and tectonic setting. These complexes are: the mafic-ultramafic complex of Lesvos Island and the ophiolites of Samothraki Island and the Evros area. In order to examine these complexes in detail whole-rock major- and trace-elements as well as Sr and Nd isotopes, and minerals were analysed and U-Pb SHRIMP ages on zircons were determined. The mafic-ultramafic complex of Lesvos Island consists of mantle peridotite thrusted over a tectonic mélange containing metasediments, metabasalts and a few metagabbros. This succession had previously been interpreted as an ophiolite of Late Jurassic age. The new field and geochemical data allow a reinterpretation of this complex as representing an incipient continental rift setting that led to the subsequent formation of the Meliata-Maliac-Vardar branches of Neotethys in Upper Permian times (253 ± 6 Ma) and the term “Lesvos ophiolite” should be abandoned. With proceeding subduction and closure of the Maliac Ocean in Late Jurassic times (155 Ma) the Lesvos mafic-ultramafic complex was obducted. Zircon ages of 777, 539 and 338 Ma from a gabbro strongly suggest inheritance from the intruded basement and correspond to ages of distinct terranes recently recognized in the Hellenides (e.g. Florina terrane). Geochemical similar complexes which contain rift associations with Permo-Triassic ages can be found elsewhere in Greece and Turkey, namely the Teke Dere Thrust Sheet below the Lycian Nappes (SW Turkey), the Pindos subophiolitic mélange (W Greece), the Volcanosedimentary Complex on Central Evia Island (Greece) and the Karakaya Complex (NW Turkey). This infers that the rift-related rocks from Lesvos belong to an important Permo-Triassic rifting episode in the eastern Mediterranean. The ‘in-situ’ ophiolite of Samothraki Island comprises gabbros, sparse dykes and basalt flows as well as pillows cut by late dolerite dykes and had conventionally been interpreted as having formed in an ensialic back-arc basin. The results of this study revealed that none of the basalts and dolerites resemble mid-ocean ridge or back-arc basin basalts thus suggesting that the Samothraki ophiolite cannot represent mature back-arc basin crust. The age of the complex is regarded to be 160 ± 5 Ma (i.e. Oxfordian; early Upper Jurassic), which precludes any correlation with the Lesvos mafic-ultramafic complex further south (253 ± 6 Ma; Upper Permian). Restoration of the block configuration in NE Greece, before extensional collapse of the Hellenic hinterland and exhumation of the Rhodope Metamorphic Core Complex (mid-Eocene to mid-Miocene), results in a continuous ophiolite belt from Guevgueli in the NW to Samothraki in the SE, thus assigning the latter to the Innermost Hellenic Ophiolite Belt. In view of the data of this study, the Samothraki ophiolite represents a rift propagation of the Sithonia ophiolite spreading ridge into the Chortiatis calc-alkaline arc. The ophiolite of the Evros area consists of a plutonic sequence comprising cumulate and non-cumulate gabbros with plagiogranite veins, and an extrusive sequence of basalt dykes, massive and pillow lavas as well as pyroclastic rocks. Furthermore, in the Rhodope Massif tectonic lenses of harzburgites and dunites can be found. All rocks are spatially separated. The analytical results of this study revealed an intra-oceanic island arc setting for the Evros ophiolitic rocks. During late Middle Jurassic times (169 ± 2 Ma) an intra-oceanic arc has developed above a northwards directed intra-oceanic subduction zone of the Vardar Ocean in front of the Rhodope Massif. The boninitic, island arc tholeiitic and calc-alkaline rocks reflect the evolution of the Evros island arc. The obduction of the ophiolitic rocks onto the Rhodope basement margin took place during closure of the Vardar ocean basins. The harzburgites and dunites of the Rhodope Massif are strongly depleted and resemble harzburgites from recent oceanic island arcs. After melt extraction they underwent enrichment processes by percolating melts and fluids from the subducted slab. The relationship of the peridotites and the Evros ophiolite is still ambiguous, but the stratigraphic positions of the peridotites and the ophiolitic rocks indicate separated origin. The harzburgites and dunites most probably represent remnants of the mantle wedge of the island arc of the Rhodope terrane formed above subducted slab of the Nestos Ocean in late Middle Jurassic times. During collision of the Thracia terrane with the Rhodope terrane thrusting of the Rhodope terrane onto the Thracia terrane took place, whereas the harzburgites and dunites were pushed between the two terranes now cropping out on top of the Thracia terrane of the Rhodope Massif.
Resumo:
Ice clouds have a strong effect on the Earth-atmosphere radiative energy balance, on the distribution of condensable gases in the atmosphere, as well as on the chemical composition of the air. The ice particles in these clouds can take on a variety of shapes which makes the description of the cloud microphysical properties more difficult. In the tropical upper troposphere/lower stratosphere (UTLS), a region where ice cloud abundance is relatively high, different types of ice clouds can be observed. However, in situ measurements are rare due to the high altitude of these clouds and the few available research aircraft, only three worldwide, that can fly at such altitudes.rnThis work focuses on in situ measurements of the tropical UTLS clouds performedrnwith a Cloud Imaging Probe (CIP) and a Forward Scattering Spectrometer Probern(FSSP-100), whereof the CIP is the key instrument of this thesis. The CIP is anrnairborne in situ instrument that obtains two-dimensional shadow images of cloud particles. Several cloud microphysical parameters can be derived from these measurements, e.g. number concentrations and size distributions. In order to obtain a high quality data set, a careful image analysis and several corrections need to be applied to the CIP observations. These methods are described in detail.rnMeasurements within the tropical UTLS have been performed during two campaigns:rnSCOUT-O3, 2005 in Northern Australia and SCOUT-AMMA, 2006 inWest Africa. Thernobtained data set includes first observations of subvisible cirrus clouds over a continental area and observations of the anvils of deep convective clouds. The latter can be further divided into clouds in mesoscale convective system outflows of different ages and clouds in overshooting cloud turrets that even penetrated the stratosphere. The microphysical properties of these three cloud types are discussed in detail. Furthermore, the vertical structure of the ice clouds in the UTLS is investigated. The values of the microphysical parameters were found to decrease with increasing altitude in the upper troposphere. Particle numbers and maximum sizes were also decreasing with increasing age of the outflow clouds. Further differences between the deep convective clouds and subvisible cirrus were found in the particle morphology as well as in the ratio of the observed aerosol particles to cloud particles which indicates that the different freezing processes (deposition, contact, immersion freezing) play different roles in the formation of the respective clouds. For the achievementrnof a better microphysical characterisation and description numerical fits have been adjusted onto the cloud particle size distributions of the subvisible cirrus as well as on the size distributions of the clouds at different altitudes in the UTLS.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.