905 resultados para Ear
Resumo:
Desordens da ansiedade, especialmente a agorafobia e a desordem do pânico foram associadas a anormalidades das funções vestibulares. Evidências de que o controle do equilíbrio pode exigir habilidades atencionais também foram relatadas. Utilizando o medo de altura como modelo clínico onde sintomas ansiosos coexistem com anormalidades com a percepção espacial e controle do equilíbrio, este estudo investigou o desempenho em testes de atenção visual em voluntários normais com altos e baixos escores obtidos do Questionário de Acrofobia. O teste de rastreio visual foi realizado em 30 indivíduos (15 em cada grupo) enquanto ouviam dois tipos diferentes de estímulos auditivos. Na condição volume um som de 900 Hz era apresentado em ambos ouvidos durante 2 segundos seguidos de mais 2 segundos de silêncio. Na condição balanço , o mesmo som era apresentado durante 2 segundos ao ouvido direito seguido por 2 segundos ao ouvido esquerdo. Estímulos auditivos de movimento provocaram maior desconforto em ambos os grupos, mas nos indivíduos com maiores escores de acrofobia estes estímulos foram associados a um pior desempenho no teste visual. Embora muito limitado pela amostra experimental, este estudo sugere que o medo de altura pode estar associado à dependência visual para manutenção do equilíbrio e que poderia piorar o desempenho nos testes visuais devido à competição dos recursos neuro-cognitivos. Implicações experimentais e clínicas destes achados preliminares exigem outras pesquisas.
Resumo:
Desordens da ansiedade, especialmente a agorafobia e a desordem do pânico foram associadas a anormalidades das funções vestibulares. Evidências de que o controle do equilíbrio pode exigir habilidades atencionais também foram relatadas. Utilizando o medo de altura como modelo clínico onde sintomas ansiosos coexistem com anormalidades com a percepção espacial e controle do equilíbrio, este estudo investigou o desempenho em testes de atenção visual em voluntários normais com altos e baixos escores obtidos do Questionário de Acrofobia. O teste de rastreio visual foi realizado em 30 indivíduos (15 em cada grupo) enquanto ouviam dois tipos diferentes de estímulos auditivos. Na condição volume um som de 900 Hz era apresentado em ambos ouvidos durante 2 segundos seguidos de mais 2 segundos de silêncio. Na condição balanço , o mesmo som era apresentado durante 2 segundos ao ouvido direito seguido por 2 segundos ao ouvido esquerdo. Estímulos auditivos de movimento provocaram maior desconforto em ambos os grupos, mas nos indivíduos com maiores escores de acrofobia estes estímulos foram associados a um pior desempenho no teste visual. Embora muito limitado pela amostra experimental, este estudo sugere que o medo de altura pode estar associado à dependência visual para manutenção do equilíbrio e que poderia piorar o desempenho nos testes visuais devido à competição dos recursos neuro-cognitivos. Implicações experimentais e clínicas destes achados preliminares exigem outras pesquisas.
Resumo:
The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.
Resumo:
Acknowledgements The work was in part funded by UK Medical Research Council project grant G0601253 to G.S.B. and R.W.B.
Resumo:
The Drosophila retinal degeneration C (rdgC) gene encodes an unusual protein serine/threonine phosphatase in that it contains at least two EF-hand motifs at its carboxy terminus. By a combination of large-scale sequencing of human retina cDNA clones and searches of expressed sequence tag and genomic DNA databases, we have identified two sequences in mammals [Protein Phosphatase with EF-hands-1 and 2 (PPEF-1 and PPEF-2)] and one in Caenorhabditis elegans (PPEF) that closely resemble rdgC. In the adult, PPEF-2 is expressed specifically in retinal rod photoreceptors and the pineal. In the retina, several isoforms of PPEF-2 are predicted to arise from differential splicing. The isoform that most closely resembles rdgC is localized to rod inner segments. Together with the recently described localization of PPEF-1 transcripts to primary somatosensory neurons and inner ear cells in the developing mouse, these data suggest that the PPEF family of protein serine/threonine phosphatases plays a specific and conserved role in diverse sensory neurons.
Resumo:
The α9 acetylcholine receptor (α9 AChR) is specifically expressed in hair cells of the inner ear and is believed to be involved in synaptic transmission between efferent nerves and hair cells. Using a recently developed method, we modified a bacterial artificial chromosome containing the mouse α9 AChR gene with a reporter gene encoding green fluorescent protein (GFP) to generate transgenic mice. GFP expression in transgenic mice recapitulated the known temporal and spatial expression of α9 AChR. However, we observed previously unidentified dynamic changes in α9 AChR expression in cochlear and vestibular sensory epithelia during neonatal development. In the cochlea, inner hair cells persistently expressed high levels of α9 AChR in both the apical and middle turns, whereas both outer and inner hair cells displayed dynamic changes of α9 AChR expression in the basal turn. In the utricle, we observed high levels of α9 AChR expression in the striolar region during early neonatal development and high levels of α9 AChR in the extrastriolar region in adult mice. Further, simultaneous visualization of efferent innervation and α9 AChR expression showed that dynamic expression of α9 AChR in developing hair cells was independent of efferent contacts. We propose that α9 AChR expression in developing auditory and vestibular sensory epithelia correlates with maturation of hair cells and is hair-cell autonomous.
Resumo:
Passive and active immunization against outer surface protein A (OspA) has been successful in protecting laboratory animals against subsequent infection with Borrelia burgdorferi. Antibodies (Abs) to OspA convey full protection, but only when they are present at the time of infection. Abs inactivate spirochetes within the tick and block their transmission to mammals, but do not affect established infection because of the loss of OspA in the vertebrate host. Our initial finding that the presence of high serum titers of anti-OspC Abs (5 to 10 μg/ml) correlates with spontaneous resolution of disease and infection in experimentally challenged immunocompetent mice suggested that therapeutic vaccination with OspC may be feasible. We now show that polyclonal and monospecific mouse immune sera to recombinant OspC, but not to OspA, of B. burgdorferi resolve chronic arthritis and carditis and clear disseminated spirochetes in experimentally infected C.B.-17 severe combined immunodeficient mice in a dose-dependent manner. This was verified by macroscopical and microscopical examination of affected tissues and recultivation of spirochetes from ear biopsies. Complete resolution of disease and infection was achieved, independent of whether OspC-specific immune sera (10 μg OspC-specific Abs) were repeatedly given (4× in 3- to 4-day intervals) before the onset (day 10 postinfection) or at the time of fully established arthritis and carditis (days 19 or 60 postinfection). The results indicate that in mice spirochetes constitutively express OspC and are readily susceptible to protective OspC-specific Abs throughout the infection. Thus, an OspC-based vaccine appears to be a candidate for therapy of Lyme disease.
Resumo:
Using in situ hybridization and immunohistochemistry the expression of, respectively, prepro-galanin (prepro-GAL) mRNA and GAL receptor-1 mRNA, as well as GAL-like and GAL message-associated peptide-like immunoreactivities, were studied in rats from embryonic day 14 (E14) to postnatal day 1. GAL expression was observed already at E14 in trigeminal and dorsal root ganglion neurons and at E15 in the sensory epithelia in developing ear, eye, and nose, as well as at E19 during bone formation. Also, GAL receptor-1 mRNA was expressed in the sensory ganglia of embryos but appeared later than the ligand. These findings suggest that GAL and/or GAL message-associated peptide may have a developmental role in several sensory systems and during bone formation.
Resumo:
The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6–5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification.
Resumo:
Much has been learned about vertebrate development by random mutagenesis followed by phenotypic screening and by targeted gene disruption followed by phenotypic analysis in model organisms. Because the timing of many developmental events is critical, it would be useful to have temporal control over modulation of gene function, a luxury frequently not possible with genetic mutants. Here, we demonstrate that small molecules capable of conditional gene product modulation can be identified through developmental screens in zebrafish. We have identified several small molecules that specifically modulate various aspects of vertebrate ontogeny, including development of the central nervous system, the cardiovascular system, the neural crest, and the ear. Several of the small molecules identified allowed us to dissect the logic of melanocyte and otolith development and to identify critical periods for these events. Small molecules identified in this way offer potential to dissect further these and other developmental processes and to identify novel genes involved in vertebrate development.
Resumo:
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system’s behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken’s cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.
Resumo:
Postmitotic hair-cell regeneration in the inner ear of birds provides an opportunity to study the effect of renewed auditory input on auditory perception, vocal production, and vocal learning in a vertebrate. We used behavioral conditioning to test both perception and vocal production in a small Australian parrot, the budgerigar. Results show that both auditory perception and vocal production are disrupted when hair cells are damaged or lost but that these behaviors return to near normal over time. Precision in vocal production completely recovers well before recovery of full auditory function. These results may have particular relevance for understanding the relation between hearing loss and human speech production especially where there is consideration of an auditory prosthetic device. The present results show, at least for a bird, that even limited recovery of auditory input soon after deafening can support full recovery of vocal precision.
Resumo:
The KMDB/MutationView is a graphical database of mutations in human disease-causing genes and its current version consists of nine category-based sub-databases including diseases of eye, heart, ear, brain, cancer, syndrome, autoimmunity, muscle and blood. The KMDB/MutationView stores mutation data of 97 genes involved in 87 different disease and is accessible through http://mutview.dmb.med.keio.ac.jp.
Resumo:
GOLD is a comprehensive resource for accessing information related to completed and ongoing genome projects world-wide. The database currently provides information on 350 genome projects, of which 48 have been completely sequenced and their analysis published. GOLD was created in 1997 and since April 2000 it has been licensed to Integrated Genomics. The database is freely available through the URL: http://igweb.integratedgenomics.com/GOLD/.
Resumo:
KCNQ1 encodes KCNQ1, which belongs to a family of voltage-dependent K+ ion channel proteins. KCNQ1 associates with a regulatory subunit, KCNE1, to produce the cardiac repolarizing current, IKs. Loss-of-function mutations in the human KCNQ1 gene have been linked to Jervell and Lange–Nielsen Syndrome (JLNS), a disorder characterized by profound bilateral deafness and a cardiac phenotype. To generate a mouse model for JLNS, we created a line of transgenic mice that have a targeted disruption in the Kcnq1 gene. Behavioral analysis revealed that the Kcnq1−/− mice are deaf and exhibit a shaker/waltzer phenotype. Histological analysis of the inner ear structures of Kcnq1−/− mice revealed gross morphological anomalies because of the drastic reduction in the volume of endolymph. ECGs recorded from Kcnq1−/− mice demonstrated abnormal T- and P-wave morphologies and prolongation of the QT and JT intervals when measured in vivo, but not in isolated hearts. These changes are indicative of cardiac repolarization defects that appear to be induced by extracardiac signals. Together, these data suggest that Kcnq1−/− mice are a potentially valuable animal model of JLNS.