987 resultados para ETHYLENE POLYMERIZATION CATALYSTS
Resumo:
MnAPO-11 and MnAPSO-11 were synthesized hydrothermally, and supported Mn-AlPO-11 and Mn-SAPO-11 were also prepared for comparison. Characterization results showed that there were differences in acidity and reducibility caused by the different incorporation methods of manganese. The manganese species in the samples also weakened the metallic properties of the palladium particles when the latter was added into the catalysts. Catalytic testing results for dehydroisomerization of n-butane indicated that incorporation of manganese increased the selectivity toward isomerization products. The highest isobutene selectivity (34.86%) could be obtained over a Pd/MnAPO-11 catalyst. When a combined catalyst system containing Pd/SAPO-11 and MnAPSO-11 was used in a single bed of two layers, the isobutene selectivity could be greatly improved, as compared to the single catalyst alone.
Resumo:
Dehydroaromatization of CH4 with 2% CO2 on 6Mo/MCM-22 in a 100-h lifetime test was carried out at 993 K, atmospheric pressure and 1500 mL/gh. The duration of the lifetime test can be divided into an induction stage, stable stage and deactivation stage on the basis of the selectivities of hydrocarbons and coke. The characteristics of deposited coke with different time onstream were studied using TPO and TG techniques. There were two peaks corresponding to two kinds of coke recorded in TPO profiles, and the oxidation temperature of coke shifted to higher values with less hydrogen content with the increase of coke deposits. BET and Benzene-TPD techniques were employed to study the variation of specific surface area of the external and micropore surface versus time onstream. With the accumulation of coke deposits, although the pores became partially blocked and the internal surface decreased, methane could still enter the channel and was converted to benzene with shape selectivity until a critical value of coke deposition was reached.
Resumo:
Performance of palladium-containing supported catalysts in the oxidation of 1-butene was investigated in a fixed-bed flow microreactor. The Pd-Fe-HCl/Ti-Al catalyst is the best among the five Pd-Fe-HCl/X (A = SiO2, gamma-Al2O3, Al-Ti, TiO2, MCM-22) catalysts for the oxidation of I-butene to butanone. It is interesting that high propionic acid selectivity can be obtained when V and H2SO4 are added to the palladium-containing supported catalysts.
Resumo:
The selective catalytic reduction of NO by CH4 was compared over In-Fe2O3/HZSM-5 catalysts prepared by impregnation and co-impregnation methods. It was found that the catalyst preparation method greatly affected the catalyst activity. The impregnated catalyst was very active, but the co-impregnated one showed poor activity. The In Fe2O3/HZSM-5 catalysts were investigated by Mossbauer spectroscopy. The results showed that indium cations entered into the iron oxide lattice in the co-impregnated catalyst, while the impregnated catalyst exhibited a more stable structure, when both of the catalysts were treated severely in the reaction atmosphere. Characterization by means of combined in situ temperature programmed reduction (TPR)- Mossbauer spectroscopy further revealed that the performances of the two catalysts were different in the TPR processes.
Resumo:
Graphitic-nanofilaments (GNFs) supported ruthenium catalysts were prepared and characterized by NZ physisorption, X-ray diffraction (XRD), transmission electron microscope (TEM) and temperature programmed reduction-mass spectroscopy (TPR-MS) and used for ammonia synthesis in a fixed bed microreactor. The TEMs of the Ru/GNFs and Ru-Ba/GNFs catalysts indicate that the Ru particles are in the range of 2-4 nm, which is the optimum size of Ru particles for the maximum number of B5 type sites. The activity of Ru-Ba/GNFs catalysts is higher than that of Ru-Ba/AC by about 25%. The methanation reaction on the Ru/GNFs catalyst is remarkably inhibited compared with a Ru/AC catalyst. High graphitization of GNFs is likely to be the reason for the high resistance to the methanation reaction. The power rate law for ammonia synthesis on Ru-Ba/GNFs catalysts can be expressed by r = Kp(NH3)(-0.4) P-N2(0.8) P-H2(-0.7), indicating that H-2 is an inhibitor for N-2 activation on the catalyst. Catalysts with the promoters Ba, K and Cs show large differences in activity for ammonia synthesis. The catalyst promoted with Ba (Ba/Ru = 0.2 molar ratio) was found to be the most active, whereas that with a K promoter was the least active. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
SbOx and SbOx/SiO2 catalysts were prepared and investigated for methane selective oxidation to HCHO. HCHO selectivity up to 41% can be obtained on Sb2O5/SiO2 catalyst at 873 K and just drop gently to 18% with temperature up to 923 K. HCHO selectivity for SbOx/SiO2 catalysts decreases gently with reaction temperature, so considerable value of HCHO selectivity can still be obtained at high temperatures.
Resumo:
Tetralin hydrogenation (HYD) and thiophene hydrodesulfurization (HDS) were studied for the supported MoS2 and WS2 sulfides, either non-promoted or promoted with Co and Ni. The supports used were ZrO2, alumina-stabilized TiO2 and pure alumina. Preparation of catalysts included presulfidation of non-promoted system with subsequent addition of promoter and resulfidation. It has been found that the nature of promoter plays determining role for the catalytic performance. The most active in both HYD and HDS reactions are Ni-promoted Mo and W catalysts, supported on ZrO2. (C) 2003 Published by Elsevier B.V.