975 resultados para ETHANOL FERMENTATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PKC1 gene in the yeast Saccharomyces cerevisiae encodes protein kinase C that is known to control a mitogen-activated protein (MAP) kinase cascade consisting of Bck1, Mkk1 and Mkk2, and Mpk1. This cascade affects the cell wall integrity but the phenotype of Pkc1 mutants suggests additional targets which have not yet been identified. We show that a pkc1Δ mutant, as opposed to mutants in the MAP kinase cascade, displays two major defects in the control of carbon metabolism. It shows a delay in the initiation of fermentation upon addition of glucose and a defect in derepression of SUC2 gene after exhaustion of glucose from the medium. After addition of glucose the production of both ethanol and glycerol started very slowly. The V max of glucose transport dropped considerably and Northern blot analysis showed that induction of the HXT1, HXT2 and HXT4 genes was strongly reduced. Growth of the pkc1Δ mutant was absent on glycerol and poor on galactose and raffinose. Oxygen uptake was barely present. Derepression of invertase activity and SUC2 transcription upon transfer of cells from glucose to raffinose was deficient in the pkc1Δ mutant as opposed to the wild-type. Our results suggest an involvement of Pkc1p in the control of carbon metabolism which is not shared by the downstream MAP kinase cascade. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

β-Glucosidase from the fungus Thermoascus aurantiacus grown on semi-solid fermentation medium (using ground corncob as substrate) was partially purified in 5 steps-ultrafiltration, ethanol precipitation, gel filtration and 2 anion exchange chromatography runs, and characterized. After the first anion exchange chromatography, β-glucosidase activity was eluted in 3 peaks (Gl-1, Gl-2, Gl-3). Only the Gl-2 and Gl-3 fractions were adsorbed on the gel matrix. Gl-2 and Gl-3 exhibited optimum pH at 4.5 and 4.0, respectively. The temperature optimum of both glucosidases was at 75-80°C. The pH stability of Gl-2 (4.0-9.0) was higher than Gl-3 (5.5-8.5); both enzyme activities showed similar patterns of thermostability. Under conditions of denaturing gel chromatography the molar mass of Gl-2 and Gl-3 was 175 and 157 kDa, respectively. Using 4-nitrophenyl β-D-glucopyranoside as substrate, Km values of 1.17 ± 0.35 and 1.38 ± 0.86 mmol/L were determined for Gl-2 and Gl-3, respectively. Both enzymes were inhibited by Ag+ and stimulated by Ca2+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, seventy-two adult rats (Rattus norvegicus albinus) aged three months were used. The animals were divided into two groups (control and alcoholic). The control group received a solid diet (Purina rat chow) and tap water ad libitum. The alcoholic group received the same solid diet and sugar-cane liquid (trade 51, 41° Gay Lussac - GL) diluted 30° GL. At the end or 90, 180 and 270 days of treatment, ten rats of each group were anaesthetized with ethyl ether and sacrificed. The ovaries were collected, fixed, included and submitted to analysis by both light and electron microscopy. The alcoholic group showed increase in the number of corpora lutea at both 180 and 270 days of treatment, atresic follicles at 270 days of treatment, decreased diameter of corpora lutea at 180 and 270 days of treatment, the granulosa layer of the antral follicles at 180 days of treatment, and gradual regression of the theca antral follicles. Furthermore, an increase in diameter and posterior regression of the antral follicle were observed, as well as vacuolation, increased lipid droplets in the granulosa cell at 90 days and in the theca at 180 and 270 days of treatment and gradually in the interstitial cell. The rats showed ovarian alterations after ingestion of alcohol. There was a correlation between exposure time to the drug and the injury observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic alcoholism alters reproduction and therefore may be responsible for alterations of vas deferens, which are the subject of this analysis in UCh ethanol-drinking rats. The proximal and distal segments of the vas deferens of 20 animals were submitted to macroscopic, light microscopy, electron microscopy and morphometric analysis. The UCh rats showed atrophy of the epithelium of the vas deferens and alterations of the hypothalamus-pituitary axis. Ethanol induces changes in the epithelium of the vas deferens and hypothalamus-pituitary axis of UCh rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moderate amounts of alcohol intake have been reported to have a protective effect on the cardiovascular system and this may involve enhanced insulin sensitivity. We established an animal model of increased insulin sensitivity by low ethanol consumption and here we investigated metabolic parameters and molecular mechanisms potentially involved in this phenomenon. For that, Wistar rats have received drinking water either without (control) or with 3% ethanol for four weeks. The effect of ethanol intake on insulin sensitivity was analyzed by insulin resistance index (HOMA-IR), intravenous insulin tolerance test (IVITT) and lipid profile. The role of liver was investigated by the analysis of insulin signaling pathway, GLUT2 gene expression and tissue glycogen content. Rats consuming 3% ethanol showed lower values of HOMA-IR and plasma free fatty acids (FFA) levels and higher hepatic glycogen content and glucose disappearance constant during the IVITT. Neither the phosphorylation of insulin receptor (IR) and insulin receptor substrate-1 (IRS-1), nor its association with phosphatidylinositol-3-kinase (PI3-kinase), was affected by ethanol. However, ethanol consumption enhanced liver IRS-2 and protein kinase B (Akt) phosphorylation (3 times, P < 0.05), which can be involved in the 2-fold increased (P < 0.05) hepatic glycogen content. The GLUT2 protein content was unchanged. Our findings point out that liver plays a role in enhanced insulin sensitivity induced by low ethanol consumption. © 2005 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The steam reforming is one of most utilized process of hydrogen production because of its high production efficiencies and its technological maturity. The use of ethanol for this purpose is a interesting option because this is a renewable and less environmentally offensive fuel. The objective of this study is evaluate the physical-chemical, thermodynamic and environmental analyses of steam reforming of ethanol. whose objective is to produce 0.7 Nm3/h of hydrogen to be used by a PEMFC of l kW. In this physical-chemical analysis, a global reaction of ethanol was considered. That is, the superheated ethanol and steam, at high temperatures, react to produce hydrogen and carbon dioxide. Beyond it's the simplest form to study the steam reforming of ethanol to hydrogen production, it's the case where occurs the highest production of hydrogen (the product to be used by fuel cells) and carbon dioxide, to be eliminated. But this reaction isn't real and depends greatly on the thermodynamic conditions of reforming, technical features of reformer system and catalysts. Other products generally formed (but not investigated in this study) are methane, carbon monoxide, among others. It was observed that the products is commonly produced in the moment when the reaction attains temperatures about 206°C (below this temperature, the reaction trend to the reaetants, that is, from hydrogen and carbon dioxide to steam and ethanol) and the advance degree of this reaction increases when the temperature of reaction also increases and when its pressure decreases. It's suggested reactions at about 600°C or higher. However, when the temperature attains 700°C, the stability of this reaction is occurred, that is, the production of reaction productions attains to the limit, that is the highest possible production. In temperatures above 700°C, the use of energy is very high for produce more products, having higher costs of production that the suggested temperature. The indicated pressure is 1 atm., a value that allows a desirable economy of energy that would also be used for pressurization or depressurization of steam reformer. In exergetic analysis, it's seem that the lower irreversibililies occur when the pressure of reactions are lower. However, the temperature changes don't affect significantly the irreversibilites. Utilizing the obtained results from this analysis, it was concluded that the best thermodynamic conditions for steam reforming of ethanol is the same conditions suggested in the physical-chemical analysis. The exergetic and first law efficiencies are high on the thermodynamie conditions studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to assess the possible toxic effects of chronic alcohol ingestion on the ultrastructure of the glandular epithelium of the prostate of the rodent Calomys callosus, in order to contribute to the understanding of the consequences of alcohol abuse for the morphology of the male reproductive apparatus. Sixteen adult animals aged three months were divided into two experimental groups. The control group received a solid diet and tap water, and the alcoholic group received the same solid diet and ethanol P.A. diluted 20% in water (v/v). After 120 days of treatment, all animals were anesthetized, weighed and sacrificed. At the end of treatment, mean body weight did not differ between control and alcoholic animals. The prostate epithelial cells of the alcoholic group showed intense atrophy and ultrastructural alterations such as the presence of lipid droplets, altered nuclei, ruptured mitochondrial cristae, and intense dilatation of the cisterns of the granular endoplasmic reticulum. It was concluded that 20% ethanol provokes marked lesions on the epithelium of the prostate probably interfering on the glandular secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A method has been developed for the simultaneous determination of Cd and Pb in antibiotics used in sugar-cane fermentation by GFAAS. The integrated platform of transversely heated graphite atomizer was treated with tungsten to form a coating of tungsten carbide. Six samples of commercial solid antibiotics were analyzed by injecting 20 μL of digested samples into the pretreated graphite platform with co-injection of 5 μL of 1000 mg L-1 Pd as chemical modifier. Samples were mineralized in a closed-vessel microwave-assisted acid-digestion system using nitric acid plus hydrogen peroxide. The pyrolysis and atomization temperatures of the heating program of the atomizer were selected as 600°C and 2200°C, respectively. The calculated characteristic mass for Cd and Pb was 1.6 pg and 42 pg, respectively. Limits of detection (LOD) based on integrated absorbance were 0.02 μg L -1 Cd and 0.7 μg L-1 Pb and the relative standard deviations (n = 10) for Cd and Pb were 5.7% and 8.0%, respectively. The recoveries of Cd and Pb added to the digested samples varied from 91% to 125% (Cd) and 80% to 112% (Pb).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Brazil, which has always been in the forefront of sugarcane production, also occupies a prominent position as the first country to produce and use biofuel in its automobile fleet. This fact is a consequence of the introduction of a program which has already turned 30 years, the Próalcool (National Alcohol Program). The oil crisis in the seventies encouraged the government to develop an alternative way to replace gasoline. Bioethanol was then born as fuel obtained from fermentation of sugarcane juice, molasses or both. In the eighties, 85% of the cars ran exclusively on alcohol. Ethanol production in that decade exceeded sugarcane production by the mills. The installed units reached in that period the capacity to produce 18 billion liters of bioethanol per season, a volume equivalent to 100 million barrels of gasoline. The fermentation process, which so far had been restricted to manufacturing sugarcane liquor (aguardente) or ethanol as a byproduct of sugarcane, takes over the spotlight in the entrepreneurial scene. As a result, processes comprising engineering concepts came up and most of the biological phenomena involved in fermentation were understood. The knowledge gathered and the units installed have granted Brazil the hold of production technology and use of a clean fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme, remaining 100% active when incubated at 75°C for 1 h. © 2007 Humana Press Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expressive amount of produced hydrogen is generated by customers in-situ such as petrochemical, fertilizer and sugarcane industries. However, the most utilized feedstock is natural gas, a non-renewable and fossil fuel. The introduction of biohydrogen production process associated in a sugarcane industry is an alternative to diminish emissions and contribute to create a CO2 cycle, where the plants capture this gas by photosynthesis process and produces sucrose for ethanol production. The cost of production of ethanol has dramatically decreased (from about US$ 700/m3 in 1970s to US$ 200/m3 today), becoming this a good option at near term, inclusively for its utilization by customers localized in main regions (localized especially in regions such as Southeastern Brazil) Also in near future, it will possible the utilization of fuel cells as form of distributed generation. Its utilization could occur specially in peak hours, diminishing the cost of investments in newer transmission systems. A technical and economic analysis of steam reformer of ethanol to hydrogen production associated with sugarcane industry was recently performed. This technique will also allow the use of ethanol when its price is relatively low. This study was based on a previous R&D study (sponsored by CEMIG - State of Minas Gerais Electricity Company) where thermodynamic and economic analyses were developed, based in the development of two ethanol steam reformers prototypes.x In this study an analysis was performed considering the use of bagasse as source of heat in the steam reforming process. Its use could to diminish the costs of hydrogen production, especially at large scale, obtaining cost-competitive production and permitting that sugarcane industry produces hydrogen in large scale beyond ethylic alcohol, anhydrous alcohol (or ethanol) and sugar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at morphometrically evaluating the influence of variable caloric values of ethanol consumption on alveolar bone loss in periodontitis in male rats. Thirty-six male rats were randomized into four groups of nine rats each, as follows: Test group A (low) - rats were fed an ethanol-containing liquid diet (ethanol representing 22% of total caloric value); Control group A - rats were fed a pair-fed control diet (ethanol replaced by isocaloric amounts of carbohydrate); Test group B (high) - rats were fed an ethanol-containing liquid diet (ethanol representing 36% of total caloric value); Control group B - rats were fed a pair-fed control diet for Test B. Following anesthesia, cotton ligatures were placed around the cervix of the right upper second molar. At eight weeks, the maxillary bones were removed and alveolar bone loss was analyzed by measuring the distance between the cementoenamel junction and the alveolar bone crest at buccal and palatal sites of the upper second molar. The unligated groups showed no significant differences between the bone loss values observed for the low and high caloric values of ethanol (p > 0.05). In the ligated groups, the rats receiving low caloric values of ethanol showed significantly greater bone loss compared to the isocaloric rats (p < 0.05); however, the rats receiving high caloric values of ethanol showed no significant differences compared to the controls. Analysis of the results demonstrated that, in male rats, ethanol itself affected ligature-induced bone loss when representing a low value in the total caloric value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exo-PG obtained from Penicillium viridicatum in submerged fermentation was purified to homogeneity. The apparent molecular weight of the enzyme was 92 kDa, optimum pH and temperature for activity were pH 5 and 50-55°C. The exo-PG showed a profile of an exo-polygalacturonase, releasing galacturonic acid by hydrolysis of pectin with a high degree of esterification (D.E.). Ions Ca 2+ enhanced the stability of enzyme and its activity by 30%. The K m was 1.30 in absence of Ca 2+ and 1.16mg mL -1 in presence of this ion. In relation to the Vmax the presence of this ion increased from 1.76 to 2.07 μmol min -1mg -1. Copyright © 2009 Eleni Gomes et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Incluye Bibliografía