925 resultados para ELECTRONEGATIVE-LDL
Resumo:
Objective: Obesity and renin angiotensin system (RAS) hyperactivity are profoundly involved in cardiovascular diseases, however aerobic exercise training (EXT) can prevent obesity and cardiac RAS activation. The study hypothesis was to investigate whether obesity and its association with EXT alter the systemic and cardiac RAS components in an obese Zucker rat strain. Methods: The rats were divided into the following groups: Lean Zucker rats (LZR); lean Zucker rats plus EXT (LZR+EXT); obese Zucker rats (OZR) and obese Zucker rats plus EXT (OZR+EXT). EXT consisted of 10 weeks of 60-min swimming sessions, 5 days/week. At the end of the training protocol heart rate (HR), systolic blood pressure (SBP), cardiac hypertrophy (CH) and function, local and systemic components of RAS were evaluated. Also, systemic glucose, triglycerides, total cholesterol and its LDL and HDL fractions were measured. Results: The resting HR decreased (, 12%) for both LZR+EXT and OZR+EXT. However, only the LZR+EXT reached significance (p, 0.05), while a tendency was found for OZR versus OZR+EXT (p = 0.07). In addition, exercise reduced (57%) triglycerides and (61%) LDL in the OZR+EXT. The systemic angiotensin I-converting enzyme (ACE) activity did not differ regardless of obesity and EXT, however, the OZR and OZR+EXT showed (66%) and (42%), respectively, less angiotensin II (Ang II) plasma concentration when compared with LZR. Furthermore, the results showed that EXT in the OZR prevented increase in CH, cardiac ACE activity, Ang II and AT2 receptor caused by obesity. In addition, exercise augmented cardiac ACE2 in both training groups. Conclusion: Despite the unchanged ACE and lower systemic Ang II levels in obesity, the cardiac RAS was increased in OZR and EXT in obese Zucker rats reduced some of the cardiac RAS components and prevented obesity-related CH. These results show that EXT prevented the heart RAS hyperactivity and cardiac maladaptive morphological alterations in obese Zucker rats.
Resumo:
Periodontal diseases result from the interaction of bacterial pathogens with the hosts gingival tissue. Gingival epithelial cells are constantly challenged by microbial cells and respond by altering their transcription profiles, inducing the production of inflammatory mediators. Different transcription profiles are induced by oral bacteria and little is known about how the gingival epithelium responds after interaction with the periodontopathogenic organism Aggregatibacter actinomycetemcomitans. In the present study, we examined the transcription of genes involved in signaling transduction pathways in gingival epithelial cells exposed to viable A.actinomycetemcomitans. Immortalized gingival epithelial cells (OBA-9) were infected with A.actinomycetemcomitans JP2 for 24 h and the transcription profile of genes encoding human signal transduction pathways was determined. Functional analysis of inflammatory mediators positively transcribed was performed by ELISA in culture supernatant and in gingival tissues. Fifteen of 84 genes on the array were over-expressed (P < 0.01) after 24 h of infection with viable A.actinomycetemcomitans. Over-expressed genes included those implicated in tissue remodeling and bone resorption, such as CSF2, genes encoding components of the LDL pathway, nuclear factor-?B-dependent genes and other cytokines. The ELISA data confirmed that granulocytemacrophage colony-stimulating factor/colony-stimulating factor 2, tumor necrosis factor-a and intercellular adhesion molecule-1 were highly expressed by infected gingival cells when compared with control non-infected cells, and presented higher concentrations in tissues from patients with aggressive and chronic periodontitis than in tissues from healthy controls. The induction in epithelial cells of factors such as the pro-inflammatory cytokine CSF2, which is involved in osteoclastogenesis, may help to explain the outcomes of A.actinomycetemcomitans infection.
Resumo:
Objective: Diastolic dysfunction (DD) is a frequent condition in hypertensive patients whose presence increases mortality and whose treatment remains unclear. The aim of this study was to investigate in a prospective, double-blinded, placebo-controlled randomized design the additive effect of simvastatin on DD in enalapril-treated hypertensive patients with average cholesterol levels. Methods: Hypertensive patients with DD and LDL-cholesterol <160 mg/dL underwent a run-in phase to achieve a systolic blood pressure (SBP) <135 mmHg and diastolic blood pressure (DBP) <85 mmHg with enalapril. Hydrochlorothiazide was added when need to achieve blood pressure control. Four weeks after reaching the optimum anti-hypertensive regimen patients were randomized to receive 80 mg simvastatin (n = 27) or placebo (n = 28) for a period of 20 weeks. Echocardiograms were performed before and after treatment with measurement of maximum left atrial volume (LAV), conventional and tissue Doppler velocities in early diastole (E, e') and late diastole (A, a'). Results: After 20 weeks, the simvastatin group presented reduction in SBP (-4 +/- 2 mmHg, p = 0.02), increase in E/A ratio (1.0 +/- 0.05 to 1.2 +/- 0.06, p = 0.03) and decrease of LAV indexed to body surface area (24.5 +/- 0.9 to 21.1 +/- 0.8 ml/m(2), p = 0.048), as compared with placebo arm. No change in systolic function and no correlation between the E/A ratio, LAV and changes in blood pressure or lipid profile were observed. Conclusions: The addition of simvastatin to enalapril in hypertensive patients with average cholesterol levels improves parameters of diastolic function independently of changes in blood pressure or cholesterol. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Modifications in low-density lipoprotein (LDL) have emerged as a major pathogenic factor of atherosclerosis, which is the main cause of morbidity and mortality in the western world. Measurements of the heat diffusivity of human LDL solutions in their native and in vitro oxidized states are presented by using the Z-Scan (ZS) technique. Other complementary techniques were used to obtain the physical parameters necessary to interpret the optical results, e. g., pycnometry, refractometry, calorimetry, and spectrophotometry, and to understand the oxidation phase of LDL particles. To determine the sample's thermal diffusivity using the thermal lens model, an iterative one-parameter fitting method is proposed which takes into account several characteristic ZS time-dependent and the position-dependent transmittance measurements. Results show that the thermal diffusivity increases as a function of the LDL oxidation degree, which can be explained by the increase of the hydroperoxides production due to the oxidation process. The oxidation products go from one LDL to another, disseminating the oxidation process and caring the heat across the sample. This phenomenon leads to a quick thermal homogenization of the sample, avoiding the formation of the thermal lens in highly oxidized LDL solutions. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.10.105003]
Resumo:
Menopause is associated with changes in lipid levels resulting in increased risk of atherosclerosis and cardiovascular events. Hormone therapy (HT) and atorvastatin have been used to improve lipid profile in postmenopausal women. Effects of HT, atorvastatin and APOE polymorphisms on serum lipids and APOE and LXRA expression were evaluated in 87 hypercholesterolemic postmenopausal women, randomly selected for treatment with atorvastatin (AT, n=17), estrogen or estrogen plus progestagen (HT, n=34) and estrogen or estrogen plus progestagen associated with atorvastatin (HT+AT, n=36). RNA was extracted from peripheral blood mononuclear cells (PBMC) and mRNA expression was measured by TaqMan (R) PCR. APOE epsilon 2/epsilon 3/epsilon 4 genotyping was performed using PCR-RFLP. Total cholesterol (TC). LDL-c and apoB were reduced after each treatment (p<0.001). Triglycerides, VLDL-c and apoAl were reduced only after atorvastatin (p<0.05), whereas triglycerides and VLDL-c were increased after HT (p=0.01). HT women had lower reduction on TC, LDL-c and apoB than AT and HT+AT groups (p<0.05). APOE mRNA expression was reduced after atorvastatin treatment (p=0.03). Although LXRA gene expression was not modified by atorvastatin, it was correlated with APOE mRNA before and after treatments. Basal APOE mRNA expression was not influenced by gene polymorphisms, however the reduction on APOE expression was more pronounced in epsilon 3 epsilon 3 than in epsilon 3 epsilon 4 carriers. Atorvastatin down-regulates APOE mRNA expression and it is modified by APOE genotypes in PBMC from postmenopausal women. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: The aim was to investigate new markers for type 2 diabetes (T2DM) dyslipidemia related with LDL and HDL metabolism. Removal from plasma of free and esterified cholesterol transported in LDL and the transfer of lipids to HDL are important aspects of the lipoprotein intravascular metabolism. The plasma kinetics (fractional clearance rate, FCR) and transfers of lipids to HDL were explored in T2DM patients and controls, using as tool a nanoemulsion that mimics LDL lipid structure (LDE). Results: C-14- cholesteryl ester FCR of the nanoemulsion was greater in T2DM than in controls (0.07 +/- 0.02 vs. 0.05 +/- 0.01 h(-1), p = 0.02) indicating that LDE was removed faster, but FCR H-3- cholesterol was equal in both groups. Esterification rates of LDE free-cholesterol were equal. Cholesteryl ester and triglyceride transfer from LDE to HDL was greater in T2DM (4.2 +/- 0.8 vs. 3.5 +/- 0.7%, p = 0.03 and 6.8 +/- 1.6% vs. 5.0 +/- 1.1, p = 0.03, respectively). Phospholipid and free cholesterol transfers were not different. Conclusions: The kinetics of free and esterified cholesterol tended to be independent in T2DM patients and the lipid transfers to HDL were also disturbed. These novel findings may be related with pathophysiological mechanisms of diabetic macrovascular disease.
Resumo:
Purpose: Dyslipidemia is characterized by high lipid blood levels that are risk factors for cardiovascular diseases, which are leading causes of death. However, it is unclear whether dyslipidemia is a cause of the dry eye syndrome (DES). Therefore we determined in transgenic mice models of dyslipidemia, whether there is an association with DES development. Methods: Dyslipidemic models included male and female adult mice overexpressing apolipoprotein CIII (Apo CIII), LDL receptor knockout (LDLR-KO) and ApoE knockout (ApoE-KO). They were compared with age-and gender-matched C57BL/6 mice. Ocular health was evaluated based on corneal slit lamp assessment, phenol red thread test (PRT) and impression cytology. Blood lipid profiles and histology of meibomian and lacrimal glands were also evaluated. Effects of high-fat diet and aging were observed in LDLR-KO and ApoCIII strains, respectively. Results: Body weight and lacrimal gland weight were significantly higher in male mice compared to females of the same strain (P < 0.05). Body weight was significantly lower in LDLRKO mice receiving high lipid diet compared to their controls (P = 0.0043). ApoE-KO were hypercholesterolemic and ApoCIII hypertriglyceridemic while LDLR-KO showed increases in both parameters. The PRT test was lower in male LDLR-KO mice with high-fat diet than control mice with standard diet (P = 0.0273). Aging did not affect lacrimal structural or functional parameters of ApoCIII strain. Conclusions: DES development is not solely dependent on dyslipidemia in relevant mice models promoting this condition. On the other hand, lacrimal gland structure and function are differentially impacted by lipid profile changes in male and female mice. This dissociation suggests that other factors beside dyslipidemia impact on tear film dysfunction and DES development.
Resumo:
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
Resumo:
The development of polymer-based photovoltaic devices brings the promise of low-cost and lightweight solar energy conversion systems. This technology requires new materials and device architectures with enhanced efficiency and lifetime, which depends on the understanding of charge-transport mechanisms. Organic films combined with electronegative nanoparticles may form systems with efficient dissociation of the photogenerated excitons, thus increasing the number of carriers to be collected by the electrodes. In this paper we investigate the steady-state photoconductive action spectra of devices formed by a bilayer of regio-regular poly(3-hexylthiophene) (RRP3HT) and TiO2 sandwiched between ITO and aluminum electrodes (ITO/TiO2:RRP3HT/Al). Photocurrents were measured for distinct bias voltages with illumination from either side of the device. Heterojunction structures were prepared by spin coating a RRP3HT film on an already deposited TiO2 layer on ITO. Symbatic and antibatic curves were obtained and a model for photocurrent action spectra was able to fit the symbatic responses. The quantum yield increased with the electric field, indicating that exciton dissociation is a field-assisted process as in an Onsager mechanism. Furthermore, the quantum yield was significantly higher when illumination was carried out through the ITO electrode onto which the TiO2 layer was deposited, as the highly electronegative TiO2 nanoparticles were efficient in exciton dissociation.
Resumo:
Abstract We aimed to investigate the effects of creatine (Cr) supplementation on the plasma lipid profile in sedentary male subjects undergoing aerobic training. Methods Subjects (n = 22) were randomly divided into two groups and were allocated to receive treatment with either creatine monohydrate (CR) (~20 g·day-1 for one week followed by ~10 g·day-1 for a further eleven weeks) or placebo (PL) (dextrose) in a double blind fashion. All subjects undertook moderate intensity aerobic training during three 40-minute sessions per week, over 3 months. High-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), very low-density lipoprotein cholesterol (VLDL), total cholesterol (TC), triglyceride (TAG), fasting insulin and fasting glycemia were analyzed in plasma. Thereafter, the homeostasis model assessment (HOMA) was calculated. Tests were performed at baseline (Pre) and after four (Post 4), eight (Post 8) and twelve (Post 12) weeks. Results We observed main time effects in both groups for HDL (Post 4 versus Post 8; P = 0.01), TAG and VLDL (Pre versus Post 4 and Post 8; P = 0.02 and P = 0.01, respectively). However, no between group differences were noted in HDL, LDL, CT, VLDL and TAG. Additionally, fasting insulin, fasting glycemia and HOMA did not change significantly. Conclusion These findings suggest that Cr supplementation does not exert any additional effect on the improvement in the plasma lipid profile than aerobic training alone.
Resumo:
Abstract Background Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index. Methods All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good). Results Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1. Conclusions Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status.
Resumo:
Background: Childhood obesity is a public health problem worldwide. Visceral obesity, particularly associated with cardio-metabolic risk, has been assessed by body mass index (BMI) and waist circumference, but both methods use sex-and age-specific percentile tables and are influenced by sexual maturity. Waist-to-height ratio (WHtR) is easier to obtain, does not involve tables and can be used to diagnose visceral obesity, even in normal-weight individuals. This study aims to compare the WHtR to the 2007 World Health Organization (WHO) reference for BMI in screening for the presence of cardio-metabolic and inflammatory risk factors in 6–10-year-old children. Methods: A cross-sectional study was undertaken with 175 subjects selected from the Reference Center for the Treatment of Children and Adolescents in Campos, Rio de Janeiro, Brazil. The subjects were classified according to the 2007 WHO standard as normal-weight (BMI z score > −1 and < 1) or overweight/obese (BMI z score ≥ 1). Systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting glycemia, low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), Homeostatic Model Assessment – Insulin Resistance (HOMA-IR), leukocyte count and ultrasensitive C-reactive protein (CRP) were also analyzed. Results: There were significant correlations between WHtR and BMI z score (r = 0.88, p < 0.0001), SBP (r = 0.51, p < 0.0001), DBP (r = 0.49, p < 0.0001), LDL (r = 0.25, p < 0.0008, HDL (r = −0.28, p < 0.0002), TG (r = 0.26, p < 0.0006), HOMA-IR (r = 0.83, p < 0.0001) and CRP (r = 0.51, p < 0.0001). WHtR and BMI areas under the curve were similar for all the cardio-metabolic parameters. A WHtR cut-off value of > 0.47 was sensitive for screening insulin resistance and any one of the cardio-metabolic parameters. Conclusions: The WHtR was as sensitive as the 2007 WHO BMI in screening for metabolic risk factors in 6-10-year-old children. The public health message “keep your waist to less than half your height” can be effective in reducing cardio-metabolic risk because most of these risk factors are already present at a cut point of WHtR ≥ 0.5. However, as this is the first study to correlate the WHtR with inflammatory markers, we recommend further exploration of the use of WHtR in this age group and other population-based samples.
Antioxidant and inflammatory aspects of lipoprotein-associated phospholipase A2 (Lp-PLA2 ): a review
Resumo:
The association of cardiovascular events with Lp-PLA2 has been studied continuously today. The enzyme has been strongly associated with several cardiovascular risk markers and events. Its discovery was directly related to the hydrolysis of the platelet-activating factor and oxidized phospholipids, which are considered protective functions. However, the hydrolysis of bioactive lipids generates lysophospholipids, compounds that have a pro-inflammatory function. Therefore, the evaluation of the distribution of Lp-PLA2 in the lipid fractions emphasized the dual role of the enzyme in the inflammatory process, since the HDL-Lp-PLA2 enzyme contributes to the reduction of atherosclerosis, while LDL-Lp-PLA2 stimulates this process. Recently, it has been verified that diet components and drugs can influence the enzyme activity and concentration. Thus, the effects of these treatments on Lp-PLA2 may represent a new kind of prevention of cardiovascular disease. Therefore, the association of the enzyme with the traditional assessment of cardiovascular risk may help to predict more accurately these diseases.
Resumo:
Abstract Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus.
Resumo:
Abstract Background Apolipoprotein E (apoE) is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE) have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL) and 181 hypercholesterolemic (HC) subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141) were treated with atorvastatin (10 mg/day/4-weeks). APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC) were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p < 0.05) and individuals with low APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p < 0.05). Individuals carrying ε2 allele have reduced risk for hypercholesterolemia (OR: 0.27, 95% I.C.: 0.08-0.85, p < 0.05) and NL ε2 carriers had lower total and LDL cholesterol and apoB levels, and higher HDL cholesterol than non-carriers (p < 0.05). APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p < 0.05). Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.