862 resultados para ELECTROCHEMICAL-DFT CORRELATION
Resumo:
The meltabilities of 14 process cheese samples were determined at 2 and 4 weeks after manufacture using sensory analysis, a computer vision method, and the Olson and Price test. Sensory analysis meltability correlated with both computer vision meltability (R-2 = 0.71, P < 0.001) and Olson and Price meltability (R-2 = 0.69, P < 0.001). There was a marked lack of correlation between the computer vision method and the Olson and Price test. This study showed that the Olson and Price test gave greater repeatability than the computer vision method. Results showed process cheese meltability decreased with increasing inorganic salt content and with lower moisture/fat ratios. There was very little evidence in this study to show that process cheese meltability changed between 2 and 4 weeks after manufacture..
Resumo:
This paper investigates how the correlations implied by a first-order simultaneous autoregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation parameter. A graph theoretic representation of the covariances in terms of walks connecting the spatial units helps to clarify a number of correlation properties of the processes. In particular, we study some implications of row-standardizing the weights matrix, the dependence of the correlations on graph distance, and the behavior of the correlations at the extremes of the parameter space. Throughout the analysis differences between directed and undirected networks are emphasized. The graph theoretic representation also clarifies why it is difficult to relate properties ofW to correlation properties of SAR(1) models defined on irregular lattices.
Resumo:
Novel imaging techniques are playing an increasingly important role in drug development, providing insight into the mechanism of action of new chemical entities. The data sets obtained by these methods can be large with complex inter-relationships, but the most appropriate statistical analysis for handling this data is often uncertain - precisely because of the exploratory nature of the way the data are collected. We present an example from a clinical trial using magnetic resonance imaging to assess changes in atherosclerotic plaques following treatment with a tool compound with established clinical benefit. We compared two specific approaches to handle the correlations due to physical location and repeated measurements: two-level and four-level multilevel models. The two methods identified similar structural variables, but higher level multilevel models had the advantage of explaining a greater proportion of variation, and the modeling assumptions appeared to be better satisfied.
Resumo:
The adsorption of carbon monoxide on the Pt{110} surface at coverages of 0.5 ML and 1.0 ML was investigated using quantitative low-energy electron diffraction (LEED IV) and density-functional theory (DFT). At 0.5 ML CO lifts the reconstruction of the clean surface but does not form an ordered overlayer. At the saturation coverage, 1.0 ML, a well-ordered p(2×1) superstructure with glide line symmetry is formed. It was confirmed that the CO molecules adsorb on top of the Pt atoms in the top-most substrate layer with the molecular axes tilted by ±22° with respect to the surface normal in alternating directions away from the close packed rows of Pt atoms. This is accompanied by significant lateral shifts of 0.55 Å away from the atop sites in the same direction as the tilt. The top-most substrate layer relaxes inwards by −4% with respect to the bulk-terminated atom positions, while the consecutive layers only show minor relaxations. Despite the lack of long-range order in the 0.5 ML CO layer it was possible to determine key structural parameters by LEED IV using only the intensities of the integer-order spots. At this coverage CO also adsorbs on atop sites with the molecular axis closer to the surface normal (b10°). The average substrate relaxations in each layer are similar for both coverages and consistent with DFT calculations performed for a variety of ordered structures with coverages of 1.0 ML and 0.5 ML.
Resumo:
The success of any diversification strategy depends upon the quality of the estimated correlation between assets. It is well known, however, that there is a tendency for the average correlation among assets to increase when the market falls and vice-versa. Thus, assuming that the correlation between assets is a constant over time seems unrealistic. Nonetheless, these changes in the correlation structure as a consequence of changes in the market’s return suggests that correlation shifts can be modelled as a function of the market return. This is the idea behind the model of Spurgin et al (2000), which models the beta or systematic risk, of the asset as a function of the returns in the market. This is an approach that offers particular attractions to fund managers as it suggest ways by which they can adjust their portfolios to benefit from changes in overall market conditions. In this paper the Spurgin et al (2000) model is applied to 31 real estate market segments in the UK using monthly data over the period 1987:1 to 2000:12. The results show that a number of market segments display significant negative correlation shifts, while others show significantly positive correlation shifts. Using this information fund managers can make strategic and tactical portfolio allocation decisions based on expectations of market volatility alone and so help them achieve greater portfolio performance overall and especially during different phases of the real estate cycle.
Resumo:
Practical applications of portfolio optimisation tend to proceed on a “top down” basis where funds are allocated first at asset class level (between, say, bonds, cash, equities and real estate) and then, progressively, at sub-class level (within property to sectors, office, retail, industrial for example). While there are organisational benefits from such an approach, it can potentially lead to sub-optimal allocations when compared to a “global” or “side-by-side” optimisation. This will occur where there are correlations between sub-classes across the asset divide that are masked in aggregation – between, for instance, City offices and the performance of financial services stocks. This paper explores such sub-class linkages using UK monthly stock and property data. Exploratory analysis using clustering procedures and factor analysis suggests that property performance and equity performance are distinctive: there is little persuasive evidence of contemporaneous or lagged sub-class linkages. Formal tests of the equivalence of optimised portfolios using top-down and global approaches failed to demonstrate significant differences, whether or not allocations were constrained. While the results may be a function of measurement of market returns, it is those returns that are used to assess fund performance. Accordingly, the treatment of real estate as a distinct asset class with diversification potential seems justified.
Resumo:
Atmospheric aerosol acts to both reduce the background concentration of natural cluster ions, and to attenuate optical propagation. Hence, the presence of aerosol has two consequences, the reduction of the air’s electrical conductivity and the visual range. Ion-aerosol theory and Koschmieder’s visibility theory are combined here to derive the related non-linear variation of the atmospheric electric potential gradient with visual range. A substantial sensitivity is found under poor visual range conditions, but, for good visual range conditions the sensitivity diminishes and little influence of local aerosol on the fair weather potential gradient occurs. This allows visual range measurements, made simply and routinely at many meteorological sites, to provide inference about the local air’s electrical properties.
Resumo:
Background. The anaerobic spirochaete Brachyspira pilosicoli causes enteric disease in avian, porcine and human hosts, amongst others. To date, the only available genome sequence of B. pilosicoli is that of strain 95/1000, a porcine isolate. In the first intra-species genome comparison within the Brachyspira genus, we report the whole genome sequence of B. pilosicoli B2904, an avian isolate, the incomplete genome sequence of B. pilosicoli WesB, a human isolate, and the comparisons with B. pilosicoli 95/1000. We also draw on incomplete genome sequences from three other Brachyspira species. Finally we report the first application of the high-throughput Biolog phenotype screening tool on the B. pilosicoli strains for detailed comparisons between genotype and phenotype. Results. Feature and sequence genome comparisons revealed a high degree of similarity between the three B. pilosicoli strains, although the genomes of B2904 and WesB were larger than that of 95/1000 (~2,765, 2.890 and 2.596 Mb, respectively). Genome rearrangements were observed which correlated largely with the positions of mobile genetic elements. Through comparison of the B2904 and WesB genomes with the 95/1000 genome, features that we propose are non-essential due to their absence from 95/1000 include a peptidase, glycine reductase complex components and transposases. Novel bacteriophages were detected in the newly-sequenced genomes, which appeared to have involvement in intra- and inter-species horizontal gene transfer. Phenotypic differences predicted from genome analysis, such as the lack of genes for glucuronate catabolism in 95/1000, were confirmed by phenotyping. Conclusions. The availability of multiple B. pilosicoli genome sequences has allowed us to demonstrate the substantial genomic variation that exists between these strains, and provides an insight into genetic events that are shaping the species. In addition, phenotype screening allowed determination of how genotypic differences translated to phenotype. Further application of such comparisons will improve understanding of the metabolic capabilities of Brachyspira species.
Resumo:
A new tetranuclear complex, [Cu4L4](ClO4)4·2H2O (1), has been synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligand (2E,3E)-3-(2-aminopropylimino) butan-2-one oxime (HL). Single-crystal X-ray diffraction studies reveal that complex 1 consists of a Cu4(NO)4 core where the four copper(II) centers having square pyramidal environment are arranged in a distorted tetrahedral geometry. They are linked together by a rare bridging mode (μ3-η1,η2,η1) of oximato ligands. Analysis of magnetic susceptibility data indicates moderate antiferromagnetic (J1 = −48 cm−1, J2 = −40 cm−1 and J3 = −52 cm−1) exchange interaction through σ-superexchange pathways (in-plane bridging) of the oxime group. Theoretical calculations based on DFT technique have been used to obtain the energy states of different spin configurations and estimate the coupling constants and to understand the exact magnetic exchange pathways.
Resumo:
New Mo(II) complexes with 2,2'-dipyridylamine (L1), [Mo(CH(3)CN)(eta(3)-C(3)H(5))(CO)(2)(L1)]OTf (C1a) and [{MoBr(eta(3)-C(3)H(5))(CO)(2)(L1)}(2)(4,4'-bipy)](PF(6))(2) (C1b), with {[bis(2-pyridyl)amino]carbonyl}ferrocene (L2), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L2)] (C2), and with the new ligand N,N-bis(ferrocenecarbonyl)-2-aminopyridine (L3), [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] (C3), were prepared and characterized by FTIR and (1)H and (13)C NMR spectroscopy. C1a, C1b, L3, and C2 were also structurally characterized by single crystal X-ray diffraction. The Mo(II) coordination sphere in all complexes features the facial arrangement of allyl and carbonyl ligands, with the axial isomer present in C1a and C2, and the equatorial in the binuclear C1b. In both C1a and C1b complexes, the L1 ligand is bonded to Mo(II) through the nitrogen atoms and the NH group is involved in hydrogen bonds. The X-ray single crystal structure of C2 shows that L2 is coordinated in a kappa(2)-N,N-bidentate chelating fashion. Complex C3 was characterized as [MoBr(eta(3)-C(3)H(5))(CO)(2)(L3)] with L3 acting as a kappa(2)-N,O-bidentate ligand, based on the spectroscopic data, complemented by DFT calculations. The electrochemical behavior of the monoferrocenyl and diferrocenyl ligands L2 and L3 has been studied together with that of their Mo(II) complexes C2 and C3. As much as possible, the nature of the different redox changes has been confirmed by spectrophotometric measurements. The nature of the frontier orbitals, namely the localization of the HOMO in Mo for both in C2 and C3, was determined by DFT studies.
Resumo:
The reduction path of the complex fac-[ReΙ(imH)(CO)3(bpy)]+ was studied in situ by UV-Vis-NIR-IR spectroelectrochemistry within an OTTLE cell. The complex undergoes 1e‒ reduction of the 2,2'-bipyridine (bpy) ligand and intramolecular electron transfer resulting in the conversion of the axial imidazole (imH) ligand to 3-imidazolate (3-im–). This step is followed by two bpy-based 1e– reductions producing ultimately the five-coordinate complex [Re(CO)3(bpy)]‒ and free 3-im‒. The identity of the reduction product fac-[Re(3-im–)(CO)3(bpy)] has been proven by partial chemical deprotonation of the parent complex followed by IR spectroelectrochemistry. This is the first time when an electrochemical conversion of metal-coordinated imidazole to terminal 3-imidazolate has been observed.
Resumo:
The Fourier series can be used to describe periodic phenomena such as the one-dimensional crystal wave function. By the trigonometric treatements in Hückel theory it is shown that Hückel theory is a special case of Fourier series theory. Thus, the conjugated π system is in fact a periodic system. Therefore, it can be explained why such a simple theorem as Hückel theory can be so powerful in organic chemistry. Although it only considers the immediate neighboring interactions, it implicitly takes account of the periodicity in the complete picture where all the interactions are considered. Furthermore, the success of the trigonometric methods in Hückel theory is not accidental, as it based on the fact that Hückel theory is a specific example of the more general method of Fourier series expansion. It is also important for education purposes to expand a specific approach such as Hückel theory into a more general method such as Fourier series expansion.
Resumo:
We present case studies of the evolution of magnetic wave amplitudes and auroral intensity through the late growth phase and the expansion phase of the substorm cycle. We present strong evidence that substorm-related auroral enhancements are clearly and demonstrably linked to ULF wave amplitudes observed at the same location. In most cases, we find that the highest correlations are observed when the magnetometer time series is advanced in time, indicating that the ULF wave amplitudes start to grow before measured auroral intensities, though interestingly this is not always the case. Further we discuss the four possible reasons that may be able to explain both the timing and the high correlations between these two phenomena, including: a simple coincidence, an artifact of instrumental effects, the response of the ionosphere to magnetic waves and auroral particle precipitation, and finally that ULF waves and auroral particle precipitation are physically linked. We discount coincidence and instrumental effects since in the studies presented here they are unlikely or in general will contribute negligible effects, and we find that the ionospheric response to waves and precipitation can explain some, but not all of the results contained within this paper. Specifically, ionospheric response to substorm waves and auroral precipitation cannot explain that the result that previous studies have shown, that onset of ULF wave activity and the onset of auroral particle precipitation occur at the same time and in the same location. This leaves the possibility that ULF waves and auroral particles are physically linked.
Resumo:
An optically transparent thin-layer electrochemical (OTTLE) cell with a locally extended optical path has been developed in order to perform vibrational circular dichroism (VCD) spectroscopy on chiral molecules prepared in specific oxidation states by means of electrochemical reduction or oxidation. The new design of the electrochemical cell successfully addresses the technical challenges involved in achieving sufficient infrared absorption. The VCD-OTTLE cell proves to be a valuable tool for the investigation of chiral redox-active molecules.