918 resultados para EEG SIGNALS
Resumo:
The influence of the immediate prestimulus EEG microstate (sub-second epoch of stable topography/map landscape) on the map landscape of visually evoked 47-channel event-related potential (ERP) microstates was examined using the frequent, non-target stimuli of a cognitive paradigm (12 volunteers). For the two most frequent prestimulus microstate classes (oriented left anterior-right posterior and right anterior-left posterior), ERP map series were selectively averaged. The post-stimulus ERP grand average map series was segmented into microstates; 10 were found. The centroid locations of positive and negative map areas were extracted as landscape descriptors. Significant differences (MANOVAs and t-tests) between the two prestimulus classes were found in four of the ten ERP microstates. The relative orientation of the two ERP microstate classes was the same as prestimulus in some ERP microstates, but reversed in others. — Thus, brain electric microstates at stimulus arrival influence the landscapes of the post-stimulus ERP maps and therefore, information processing; prestimulus microstate effects differed for different post-stimulus ERP microstates.
Resumo:
Global complexity of 47-channel resting electroencephalogram (EEG) of healthy young volunteers was studied after intake of a single dose of a nootropic drug (piracetam, Nootropil® UCB Pharma) in 12 healthy volunteers. Four treatment levels were used: 2.4, 4.8, 9.6 g piracetam and placebo. Brain electric activity was assessed through Global Dimensional Complexity and Global Omega-Complexity as quantitative measures of the complexity of the trajectory of multichannel EEG in state space. After oral ingestion (1–1.5 h), both measures showed significant decreases from placebo to 2.4 g piracetam. In addition, Global Dimensional Complexity showed a significant return to placebo values at 9.6 g piracetam. The results indicate that a single dose of piracetam dose-dependently affects the spontaneous EEG in normal volunteers, showing effects at the lowest treatment level. The decreased EEG complexity is interpreted as increased cooperativity of brain functional processes.
Resumo:
In young, first-episode, productive, medication-naive patients with schizophrenia, EEG microstates (building blocks of mentation) tend to be shortened. Koenig et al. [Koenig, T., Lehmann, D., Merlo, M., Kochi, K., Hell, D., Koukkou, M., 1999. A deviant EEG brain microstate in acute, neuroleptic-naïve schizophrenics at rest. European Archives of Psychiatry and Clinical Neuroscience 249, 205–211] suggested that shortening concerned specific microstate classes. Sequence rules (microstate concatenations, syntax) conceivably might also be affected. In 27 patients of the above type and 27 controls, from three centers, multichannel resting EEG was analyzed into microstates using k-means clustering of momentary potential topographies into four microstate classes (A–D). In patients, microstates were shortened in classes B and D (from 80 to 70 ms and from 94 to 82 ms, respectively), occurred more frequently in classes A and C, and covered more time in A and less in B. Topography differed only in class B where LORETA tomography predominantly showed stronger left and anterior activity in patients. Microstate concatenation (syntax) generally were disturbed in patients; specifically, the class sequence A→C→D→A predominated in controls, but was reversed in patients (A→D→C→A). In schizophrenia, information processing in certain classes of mental operations might deviate because of precocious termination. The intermittent occurrence might account for Bleuler's “double bookkeeping.” The disturbed microstate syntax opens a novel physiological comparison of mental operations between patients and controls.
Resumo:
Map landscape-based segmentation of the sequences of momentary potential distribution maps (42-channel recordings) into brain microstates during spontaneous brain activity was used to study brain electric field spatial effects of single doses of piracetam (2.9, 4.8, and 9.6 g Nootropil® UCB and placebo) in a double-blind study of five normal young volunteers. Four 15-second epochs were analyzed from each subject and drug condition. The most prominent class of microstates (covering 49% of the time) consisted of potential maps with a generally anterior-posterior field orientation. The map orientation of this microstate class showed an increasing clockwise deviation from the placebo condition with increasing drug doses (Fisher's probability product, p < 0.014). The results of this study suggest the use of microstate segmentation analysis for the assessment of central effects of medication in spontaneous multichannel electroencephalographic data, as a complementary approach to frequency-domain analysis.
Resumo:
The topic of this study was to evaluate state-dependent effects of diazepam on the frequency characteristics of 47-channel spontaneous EEG maps. A novel method, the FFT-Dipole-Approximation (Lehmann and Michel, 1990), was used to study effects on the strength and the topography of the maps in the different frequency bands. Map topography was characterized by the 3-dimensional location of the equivalent dipole source and map strength was defined as the spatial standard deviation (the Global Field Power) of the maps of each frequency point. The Global Field Power can be considered as a measure of the amount of energy produced by the system, while the source location gives an estimate of the center of gravity of all sources in the brain that were active at a certain frequency. State-dependency was studied by evaluating the drug effects before and after a continuous performance task of 25 min duration. Clear interactions between drug (diazepam vs. placebo) and time after drug intake (before and after the task) were found, especially in the inferior-superior location of the dipole sources. It supports the hypothesis that diazepam, like other drugs, has different effects on brain functions depending on the momentary functional state of the brain. In addition to the drug effects, clearly different source locations and Global Field Power were found for the different frequency bands, replicating earlier reports (Michel et al., 1992).
Resumo:
OBJECTIVE: There are relevant links between resting-state fMRI networks, EEG microstate classes and psychopathological alterations in mental disorders associated with frontal lobe dysfunction. We hypothesized that a certain microstate class, labeled C and correlated with the salience network, was impaired early in frontotemporal dementia (FTD), and that microstate class D, correlated with the frontoparietal network, was impaired in schizophrenia. METHODS: We measured resting EEG microstate parameters in patients with mild FTD (n = 18), schizophrenia (n = 20), mild Alzheimer's disease (AD; n = 19) and age-matched controls (old n = 19, young n = 18) to investigate neuronal dynamics at the whole-brain level. RESULTS: The duration of class C was significantly shorter in FTD than in controls and AD, and the duration of class D was significantly shorter in schizophrenia than in controls, FTD and AD. Transition analysis showed a reversed sequence of activation of classes C and D in FTD and schizophrenia patients compared with that in controls, with controls preferring transitions from C to D, and patients preferring D to C. CONCLUSION: The duration and sequence of EEG microstates reflect specific aberrations of frontal lobe functions in FTD and schizophrenia. SIGNIFICANCE: This study highlights the importance of subsecond brain dynamics for understanding of psychiatric disorders.
Resumo:
We investigated whether different, personality-related affective attitudes are associated with different brain electric field (EEG) sources before any emotional challenge (stimulus exposure). A 27-channel EEG was recorded in 15 subjects during eyes-closed resting. After recording, subjects rated 32 images of human faces for affective appeal. The subjects in the first (i.e., most negative) and fourth (i.e., most positive) quartile of general affective attitude were further analyzed. The EEG data (mean=25±4.8 s/subject) were subjected to frequency-domain model dipole source analysis (FFT-Dipole-Approximation), resulting in 3-dimensional intracerebral source locations and strengths for the delta–theta, alpha, and beta EEG frequency band, and for the full range (1.5–30 Hz) band. Subjects with negative attitude (compared to those with positive attitude) showed the following source locations: more inferior for all frequency bands, more anterior for the delta–theta band, more posterior and more right for the alpha, beta and 1.5–30 Hz bands. One year later, the subjects were asked to rate the face images again. The rating scores for the same face images were highly correlated for all subjects, and original and retest affective mean attitude was highly correlated across subjects. The present results show that subjects with different affective attitudes to face images had different active, cerebral, neural populations in a task-free condition prior to viewing the images. We conclude that the brain functional state which implements affective attitude towards face images as a personality feature exists without elicitors, as a continuously present, dynamic feature of brain functioning.
Resumo:
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Resumo:
OBJECTIVE: In young, first-episode, never-treated schizophrenics compared with controls, (a) generally shorter durations of EEG microstates were reported (Koukkou et al., Brain Topogr 6 (1994) 251; Kinoshita et al., Psychiatry Res Neuroimaging 83 (1998) 58), and (b) specifically, shorter duration of a particular class of microstates (Koenig et al., Eur Arch Psychiatry Clin Neurosci 249 (1999) 205). We now examined whether older, chronic schizophrenic patients with positive symptomatology also show these characteristics. METHODS: Multichannel resting EEG (62.2 s/subject) from two subject groups, 14 patients (36.1+/-10.2 years old) and 13 controls (35.1+/-8.2 years old), all males, was analyzed into microstates using a global approach for microstate analysis that clustered the microstates into 4 classes (Koenig et al., 1999). RESULTS: (a) Hypothesis testing of general microstate shortening supported a trend (P=0.064). (b) Two-way repeated measure ANOVA (two subject groupsx4 microstate classes) showed a significant group effect for microstate duration. Posthoc tests revealed that a microstate class with brain electric field orientation from left central to right central-posterior had significantly shorter microstates in patients than controls (68.5 vs. 76.1 ms, P=0.034). CONCLUSIONS: The results were in line with the results from young, never-treated, productive patients, thus suggesting that in schizophrenic information processing, one class of mental operations might intermittently cause deviant mental constructs because of premature termination of processing.
Resumo:
Nondemented Parkinson’s disease (PD) patients showed increased amplitude of event-related potential component P3. We recorded 18-channel spontaneous eyes-closed resting EEG and auditory oddball event-related potentials in 29 PD patients and 11 age-matched controls. Combining Mini-Mental State Examination score and oddball P3 counting performance, 15 patients were intellectually normal, 7 moderately, and 7 severely demented. P3 and N1 amplitude and latency, mean amplitude of 1,024 ms post-stimulus (separate after rare and after frequent stimuli), and resting EEG total power for 40 s were computed, and linearly regressed for age, sex, and L-dopa dosage. In nondemented PD patients, increased P3 amplitude was confirmed, but N1 amplitude and mean amplitude after rare and frequent stimuli were also increased as well as – most important – resting EEG total power. With increasing dementia, amplitude and power decreased, and P3 latency increased. Task demands cannot explain increased P3 amplitude, since similarly increased EEG total power was found during no-task resting. Prospective studies must determine whether P3 amplitude and EEG power in nondemented PD patients can serve as predictors of dementia.
Resumo:
We investigated brain electric field signatures of subjective feelings after chewing regular gum or gum base without flavor. 19-channel eyes-closed EEG from 20 healthy males before and after 5 minutes of chewing the two gum types in random sequence was source modeled in the frequency domain using the FFT-Dipole-Approximation. 3-dimensional brain locations and strengths (Global Field Power, GFP) of the equivalent sources of five frequency bands were computed as changes from pre-chewing baseline. Gum types differed (ANOVA) in pre-post changes of source locations for the alpha-2 band (to anterior and right after regular gum, opposite after gum base) and beta-2 band (to anterior and inferior after regular gum, opposite after gum base), and of GFP for delta-theta, alpha-2 and beta-1 (regular gum: increase, gum base: decrease). Subjective feeling changed to more positive values after regular gum than gum base (ANOVA).—Thus, chewing gum with and without taste-smell activates different brain neuronal populations.
Resumo:
Global complexity of spontaneous brain electric activity was studied before and after chewing gum without flavor and with 2 different flavors. One-minute, 19-channel, eyes-closed electroencephalograms (EEG) were recorded from 20 healthy males before and after using 3 types of chewing gum: regular gum containing sugar and aromatic additives, gum containing 200 mg theanine (a constituent of Japanese green tea), and gum base (no sugar, no aromatic additives); each was chewed for 5 min in randomized sequence. Brain electric activity was assessed through Global Omega (Ω)-Complexity and Global Dimensional Complexity (GDC), quantitative measures of complexity of the trajectory of EEG map series in state space; their differences from pre-chewing data were compared across gum-chewing conditions. Friedman Anova (p < 0.043) showed that effects on Ω-Complexity differed significantly between conditions and differences were maximal between gum base and theanine gum. No differences were found using GDC. Global Omega-Complexity appears to be a sensitive measure for subtle, central effects of chewing gum with and without flavor.
Resumo:
OBJECTIVES This in vitro study was established to examine whether visfatin thought to be a link between periodontitis and obesity is produced by periodontal ligament (PDL) cells and, if so, whether its synthesis is modulated by microbial and/or biomechanical signals. MATERIALS AND METHODS PDL cells seeded on BioFlex® plates were exposed to the oral pathogen Fusobacterium nucleatum ATCC 25586 and/or subjected to biomechanical strain for up to 3 days. Gene expression of visfatin and toll-like receptors (TLR) 2 and 4 was analyzed by RT-PCR, visfatin protein synthesis by ELISA and immunocytochemistry, and NFκB nuclear translocation by immunofluorescence. RESULTS F. nucleatum upregulated the visfatin expression in a dose- and time-dependent fashion. Preincubation with neutralizing antibodies against TLR2 and TLR4 caused a significant inhibition of the F. nucleatum-upregulated visfatin expression at 1 day. F. nucleatum stimulated the NFκB nuclear translocation. Biomechanical loading reduced the stimulatory effects of F. nucleatum on visfatin expression at 1 and 3 days and also abrogated the F. nucleatum-induced NFκB nuclear translocation at 60 min. Biomechanical loading inhibited significantly the expression of TLR2 and TLR4 at 3 days. The regulatory effects of F. nucleatum and/or biomechanical loading on visfatin expression were also observed at protein level. CONCLUSIONS PDL cells produce visfatin, and this production is enhanced by F. nucleatum. Biomechanical loading seems to be protective against the effects of F. nucleatum on visfatin expression. CLINICAL RELEVANCE Visfatin produced by periodontal tissues could play a major role in the pathogenesis of periodontitis and the interactions with obesity and other systemic diseases.
Resumo:
Atrial fibrillation (AF) is the most common cardiac arrhythmia, and is responsible for the highest number of rhythm-related disorders and cardioembolic strokes worldwide. Intracardiac signal analysis during the onset of paroxysmal AF led to the discovery of pulmonary vein as a triggering source of AF, which has led to the development of pulmonary vein ablation--an established curative therapy for drug-resistant AF. Complex, multicomponent and rapid electrical activity widely involving the atrial substrate characterizes persistent/permanent AF. Widespread nature of the problem and complexity of signals in persistent AF reduce the success rate of ablation therapy. Although signal processing applied to extraction of relevant features from these complex electrograms has helped to improve the efficacy of ablation therapy in persistent/permanent AF, improved understanding of complex signals should help to identify sources of AF and further increase the success rate of ablation therapy.
Resumo:
Fibroblast growth factor (FGF) receptor-like protein 1 (FGFRL1) is a recently discovered member of the FGF receptor (FGFR) family. Similar to the classical FGFRs, it contains three extracellular immunoglobulin-like domains and interacts with FGF ligands. However, in contrast to the classical receptors, it does not contain any intracellular tyrosine kinase domain and consequently cannot signal by transphosphorylation. In mouse kidneys, FgfrL1 is expressed primarily at embryonic stages E14-E15 in regions where nascent nephrons develop. In this study, we used whole-mount in situ hybridization to show the spatial pattern of five different Fgfrs in the developing mouse kidney. We compared the expression pattern of FgfrL1 with that of other Fgfrs. The expression pattern of FgfrL1 closely resembled that of Fgfr1, but clearly differed from that of Fgfr2‑Fgfr4. It is therefore conceivable that FgfrL1 signals indirectly via Fgfr1. The mechanisms by which FgfrL1 affects the activity of Fgfr1 remain to be elucidated.