875 resultados para Distribution network reconfiguration problem
Resumo:
A model of pitch perception, called the Spatial Pitch Network or SPINET model, is developed and analyzed. The model neurally instantiates ideas front the spectral pitch modeling literature and joins them to basic neural network signal processing designs to simulate a broader range of perceptual pitch data than previous spectral models. The components of the model arc interpreted as peripheral mechanical and neural processing stages, which arc capable of being incorporated into a larger network architecture for separating multiple sound sources in the environment. The core of the new model transforms a spectral representation of an acoustic source into a spatial distribution of pitch strengths. The SPINET model uses a weighted "harmonic sieve" whereby the strength of activation of a given pitch depends upon a weighted sum of narrow regions around the harmonics of the nominal pitch value, and higher harmonics contribute less to a pitch than lower ones. Suitably chosen harmonic weighting functions enable computer simulations of pitch perception data involving mistuned components, shifted harmonics, and various types of continuous spectra including rippled noise. It is shown how the weighting functions produce the dominance region, how they lead to octave shifts of pitch in response to ambiguous stimuli, and how they lead to a pitch region in response to the octave-spaced Shepard tone complexes and Deutsch tritones without the use of attentional mechanisms to limit pitch choices. An on-center off-surround network in the model helps to produce noise suppression, partial masking and edge pitch. Finally, it is shown how peripheral filtering and short term energy measurements produce a model pitch estimate that is sensitive to certain component phase relationships.
Resumo:
A methodology for improved power controller switching in mobile Body Area Networks operating within the ambient healthcare environment is proposed. The work extends Anti-windup and Bumpless transfer results to provide a solution to the ambulatory networking problem that ensures sufficient biometric data can always be regenerated at the base station. The solution thereby guarantees satisfactory quality of service for healthcare providers. Compensation is provided for the nonlinear hardware constraints that are a typical feature of the type of network under consideration and graceful performance degradation in the face of hardware output power saturation is demonstrated, thus conserving network energy in an optimal fashion.
Resumo:
Recent years have witnessed a rapid growth in the demand for streaming video over the Internet and mobile networks, exposes challenges in coping with heterogeneous devices and varying network throughput. Adaptive schemes, such as scalable video coding, are an attractive solution but fare badly in the presence of packet losses. Techniques that use description-based streaming models, such as multiple description coding (MDC), are more suitable for lossy networks, and can mitigate the effects of packet loss by increasing the error resilience of the encoded stream, but with an increased transmission byte cost. In this paper, we present our adaptive scalable streaming technique adaptive layer distribution (ALD). ALD is a novel scalable media delivery technique that optimises the tradeoff between streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data are spread amongst all packets, thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the resiliency of the scalable video. The Subjective testing results illustrate that our techniques and models were able to provide levels of consistent high-quality viewing, with lower transmission cost, relative to MDC, irrespective of clip type. This highlights the benefits of selective packetisation in addition to intuitive encoding and transmission.
Resumo:
Bandwidth constriction and datagram loss are prominent issues that affect the perceived quality of streaming video over lossy networks, such as wireless. The use of layered video coding seems attractive as a means to alleviate these issues, but its adoption has been held back in large part by the inherent priority assigned to the critical lower layers and the consequences for quality that result from their loss. The proposed use of forward error correction (FEC) as a solution only further burdens the bandwidth availability and can negate the perceived benefits of increased stream quality. In this paper, we propose Adaptive Layer Distribution (ALD) as a novel scalable media delivery technique that optimises the tradeoff between the streaming bandwidth and error resiliency. ALD is based on the principle of layer distribution, in which the critical stream data is spread amongst all datagrams thus lessening the impact on quality due to network losses. Additionally, ALD provides a parameterised mechanism for dynamic adaptation of the scalable video, while providing increased resilience to the highest quality layers. Our experimental results show that ALD improves the perceived quality and also reduces the bandwidth demand by up to 36% in comparison to the well-known Multiple Description Coding (MDC) technique.
Resumo:
The long-term soil carbon dynamics may be approximated by networks of linear compartments, permitting theoretical analysis of transit time (i.e., the total time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system) distributions. We compute and compare these distributions for different network. configurations, ranging from the simple individual compartment, to series and parallel linear compartments, feedback systems, and models assuming a continuous distribution of decay constants. We also derive the transit time and age distributions of some complex, widely used soil carbon models (the compartmental models CENTURY and Rothamsted, and the continuous-quality Q-Model), and discuss them in the context of long-term carbon sequestration in soils. We show how complex models including feedback loops and slow compartments have distributions with heavier tails than simpler models. Power law tails emerge when using continuous-quality models, indicating long retention times for an important fraction of soil carbon. The responsiveness of the soil system to changes in decay constants due to altered climatic conditions or plant species composition is found to be stronger when all compartments respond equally to the environmental change, and when the slower compartments are more sensitive than the faster ones or lose more carbon through microbial respiration. Copyright 2009 by the American Geophysical Union.
Resumo:
In this paper, we have considered the problem of selection of available repertoires. With Ab2 as immunogens, we have used the idiotypic cascade to explore potential repertoires. Our results suggest that potential idiotypic repertoires are more or less the same within a species or between different species. A given idiotype "à la Oudin" can become a recurrent one within the same outbred species or within different species. Similarly, an intrastrain crossreactive idiotype can be induced in other strains, even though there is a genetic disparity between these strains. The structural basis of this phenomenon has been explored. We next examined results showing the loss and gain of recurrent idiotypes without any intentional idiotypic manipulation. A recurrent idiotype can be lost in a syngeneic transfer and a private one can become recurrent by changing the genetic background. The change of available idiotypic repertoires at the B cell level has profound influences on the idiotypic repertoires of suppressor T cells. All these results imply that idiotypic games are played by the immune system itself, a strong suggestion that the immune system is a functional idiotypic network.
Resumo:
In this paper the many to many location routing problem is introduced, and its relationship to various problems in distribution management is emphasised. Useful mathematical formulations which can be easily extended to cater for other related problems are produced. Techniques for tackling this complex distribution problem are also outlined.
Resumo:
Temperature distributions involved in some metal-cutting or surface-milling processes may be obtained by solving a non-linear inverse problem. A two-level concept on parallelism is introduced to compute such temperature distribution. The primary level is based on a problem-partitioning concept driven by the nature and properties of the non-linear inverse problem. Such partitioning results to a coarse-grained parallel algorithm. A simplified 2-D metal-cutting process is used as an example to illustrate the concept. A secondary level exploitation of further parallel properties based on the concept of domain-data parallelism is explained and implemented using MPI. Some experiments were performed on a network of loosely coupled machines consist of SUN Sparc Classic workstations and a network of tightly coupled processors, namely the Origin 2000.
Resumo:
The main interest in the assessment of forest species diversity for conservation purposes is in the rare species. The main problem in the tropical rain forests is that most of the species are rare. Assessment of species diversity in the tropical rain forests is therefore often concerned with estimating that which is not observed in recorded samples. Statistical methodology is therefore required to try to estimate the truncated tail of the species frequency distribution, or to estimate the asymptote of species/diversity-area curves. A Horvitz-Thompson estimator of the number of unobserved (“virtual”) species in each species intensity class is proposed. The approach allows a definition of an extended definition of diversity, ( or generalised Renyi entropy). The paper presents a case study from data collected in Jambi, Sumatra, and the “extended diversity measure” is used on the species data.
Resumo:
This paper presents a genetic algorithm for finding a constrained minimum spanning tree. The problem is of relevance in the design of minimum cost communication networks, where there is a need to connect all the terminals at a user site to a terminal concentrator in a multipoint (tree) configuration, while ensuring that link capacity constraints are not violated. The approach used maintains a distinction between genotype and phenotype, which produces superior results to those found using a direct representation in a previous study.
Resumo:
Numerical solutions of realistic 2-D and 3-D inverse problems may require a very large amount of computation. A two-level concept on parallelism is often used to solve such problems. The primary level uses the problem partitioning concept which is a decomposition based on the mathematical/physical problem. The secondary level utilizes the widely used data partitioning concept. A theoretical performance model is built based on the two-level parallelism. The observed performance results obtained from a network of general purpose Sun Sparc stations are compared with the theoretical values. Restrictions of the theoretical model are also discussed.
Resumo:
The European Skynet Radiometers network (EuroSkyRad or ESR) has been recently established as a research network of European PREDE sun-sky radiometers. Moreover, ESR is federated with SKYNET, an international network of PREDE sun-sky radiometers mostly present in East Asia. In contrast to SKYNET, the European network also integrates users of the CIMEL CE318 sky–sun photometer. Keeping instrumental duality in mind, a set of open source algorithms has been developed consisting of two modules for (1) the retrieval of direct sun products (aerosol optical depth, wavelength exponent and water vapor) from the sun extinction measurements; and (2) the inversion of the sky radiance to derive other aerosol optical properties such as size distribution, single scattering albedo or refractive index. In this study we evaluate the ESR direct sun products in comparison with the AERosol RObotic NETwork (AERONET) products. Specifically, we have applied the ESR algorithm to a CIMEL CE318 and PREDE POM simultaneously for a 4-yr database measured at the Burjassot site (Valencia, Spain), and compared the resultant products with the AERONET direct sun measurements obtained with the same CIMEL CE318 sky–sun photometer. The comparison shows that aerosol optical depth differences are mostly within the nominal uncertainty of 0.003 for a standard calibration instrument, and fall within the nominal AERONET uncertainty of 0.01–0.02 for a field instrument in the spectral range 340 to 1020 nm. In the cases of the Ångström exponent and the columnar water vapor, the differences are lower than 0.02 and 0.15 cm, respectively. Therefore, we present an open source code program that can be used with both CIMEL and PREDE sky radiometers and whose results are equivalent to AERONET and SKYNET retrievals.
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.
Resumo:
Vitamin traffic, the production of organic growth factors by some microbial community members and their use by other taxa, is being scrutinized as a potential explanation for the variation and highly connected behavior observed in ocean plankton by community network analysis. Thiamin (vitamin B1), a cofactor in many essential biochemical reactions that modify carbon-carbon bonds of organic compounds, is distributed in complex patterns at subpicomolar concentrations in the marine surface layer (0-300 m). Sequenced genomes from organisms belonging to the abundant and ubiquitous SAR11 clade of marine chemoheterotrophic bacteria contain genes coding for a complete thiamin biosynthetic pathway, except for thiC, encoding the 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP) synthase, which is required for de novo synthesis of thiamin's pyrimidine moiety. Here we demonstrate that the SAR11 isolate 'Candidatus Pelagibacter ubique', strain HTCC1062, is auxotrophic for the thiamin precursor HMP, and cannot use exogenous thiamin for growth. In culture, strain HTCC1062 required 0.7 zeptomoles per cell (ca. 400 HMP molecules per cell). Measurements of dissolved HMP in the Sargasso Sea surface layer showed that HMP ranged from undetectable (detection limit: 2.4 pM) to 35.7 pM, with maximum concentrations coincident with the deep chlorophyll maximum. In culture, some marine cyanobacteria, microalgae and bacteria exuded HMP, and in the Western Sargasso Sea, HMP profiles changed between the morning and evening, suggesting a dynamic biological flux from producers to consumers.
Resumo:
Front detection and aggregation techniques were applied to 300m resolution MERIS satellite ocean colour data for the first time, to describe frequently occurring shelf-sea fronts near to the Scottish coast. Medium resolution (1km) thermal and colour data have previously been used to analyse the distribution of surface fronts, though these cannot capture smaller frontal zones or those in close proximity to the coast, particularly where the coastline is convoluted. Seasonal frequent front maps, derived from both chlorophyll and SST data, revealed a number of key frontal zones, a subset of which were based on new insights into the sediment and plankton dynamics provided exclusively by the higher-resolution chlorophyll fronts. The methodology is described for applying colour and thermal front data to the task of identifying zones of ecological importance that could assist the process of defining marine protected areas. Each key frontal zone is analysed to describe its spatial and temporal extent and variability, and possible mechanisms. It is hoped that these tools can provide guidance on the dynamic habitats of marine fauna towards aspects of marine spatial planning and conservation.