996 resultados para Distributed parameters
Resumo:
Approximately 7.2% of the Atlantic rainforest remains in Brazil, with only 16% of this forest remaining in the State of Rio de Janeiro, all of it distributed in fragments. This forest fragmentation can produce biotic and abiotic differences between edges and the fragment interior. In this study, we compared the structure and richness of tree communities in three habitats - an anthropogenic edge (AE), a natural edge (NE) and the fragment interior (FI) - of a fragment of Atlantic forest in the State of Rio de Janeiro, Brazil (22°50'S and 42°28'W). One thousand and seventy-six trees with a diameter at breast height > 4.8 cm, belonging to 132 morphospecies and 39 families, were sampled in a total study area of 0.75 ha. NE had the greatest basal area and the trees in this habitat had the greatest diameter:height allometric coefficient, whereas AE had a lower richness and greater variation in the height of the first tree branch. Tree density, diameter, height and the proportion of standing dead trees did not differ among the habitats. There was marked heterogeneity among replicates within each habitat. These results indicate that the forest interior and the fragment edges (natural or anthropogenic) do not differ markedly considering the studied parameters. Other factors, such as the age from the edge, type of matrix and proximity of gaps, may play a more important role in plant community structure than the proximity from edges.
Resumo:
The main focus of this thesis is to define the field weakening point of permanent magnet synchronous machine with embedded magnets in traction applications. Along with the thesis a modelling program is made to help the designer to define the field weakening point in practical applications. The thesis utilizes the equations based on the current angle. These equations can be derived from the vector diagram of permanent magnet synchronous machine. The design parameters of the machine are: The maximum rotational speed, saliency ratio, maximum induced voltage and characteristic current. The main result of the thesis is finding out the rated rotational speed, from which the field weakening starts. The action of the machine is estimated at a wide speed range and the changes of machine parameters are examined.
Resumo:
ABSTRACT The productivity of Eucalyptus at plantations is increasing and has undergone a variety of research studies. Most research is dealing with simple dendrometric variables like the DBH (diameter at breast height) and tree height, or more complex variables including crown parameters or variables concerning photosynthesis. The root systems, however, have not been well analyzed yet. The objective of the study was to analyze the root system with a non-destructive method and to evaluate possible correlations with dendrometric variables of the tree (DBH, height, crown expansion). A small experimental plantation with 39 even-aged, 6-year-old trees of Eucalyptus grandis x urophylla has been investigated within this study. The results of the study show the highest correlation of the root areas with the crown expansion. In general, the root area shows a significantly bigger expansion in the eucalypt plantation than the tree crown, with a more homogeneous development.
Resumo:
The objective of this work was to determine the effect of environmental variables and supplementation levels on physiological parameters of Moxotó goats in confined and semi-confined rising systems, in the Brazilian semi-arid region. The semi-confined individuals were kept on a grass based diet during the day and arrested in the end of the afternoon. The confined animals were kept in a management center, receiving two diets composed by forage cactus and maniçoba hay into two different levels (0.5 and 1.5% of the body weight). Inside the management center and in the external environment the environmental comfort parameters were set high during the afternoon period characterizing a situation of thermal discomfort for the animals. During the morning the semi-confined animals presented an average respiratory frequency (69.5 mov min-1) and rectal temperature (39.5 ºC) higher than the confined ones (62.6 mov min-1 and 39.0 ºC, respectively). The confined and semi-confined animals were able to maintain their rectal temperature within normal limits, with increase in the cardiac beatings rate and respiratory frequency. The greater percentage of the used supplementations (1.5%) seemed to increase rectal temperature in the two studied rising systems.
Resumo:
The use of no tillage system associated with the crop-livestock integration is an alternate managing that promotes the accumulation of dry matter in the soil, an essential fact to make the system sustainable and profitable. The aim of this study was to evaluate the operational performance of a planter-tractor set on maize straws intercropped with Urochloa, in different seeding modes. The soybean crop was seed on the intercropping of two forage species (Urochloa brizantha and Urochloa ruziziensis) in five cropping systems: MBL (Maize with Urochloa in the maize seeding row, mixed with base fertilizer and deposited at 0.10 m), MBE (Maize with Urochloa seeded between rows at the same day of seeding maize), MBC (Urochloa between rows of maize seeded with the covering fertilizer at the V4 stage), MBLA (Maize with Urochloa by broadcast seeding at the V4 stage ) and MS (Single Maize: control). The following variables were evaluated: dry mass of maize straw, dry mass of forages and total dry mass of straw; and for the operational parameters the speed of seeding, wheel slippage, traction force and average power at the drawbar. The results showed that the amount of straw produced by maize intercropping with Urochloa, interferes in the operational performance of the tractor-planter at the operation of soybean seeding, i.e., areas with higher amount of straw promote greater energy demand, as well as higher wheel slippage.
Resumo:
The interaction between the soil and tillage tool can be examined using different parameters for the soil and the tool. Among the soil parameters are the shear stress, cohesion, internal friction angle of the soil and the pre-compression stress. The tool parameters are mainly the tool geometry and depth of operation. Regarding to the soils of Rio Grande do Sul there are hardly any studies and evaluations of the parameters that have importance in the use of mathematical models to predict tensile loads. The objective was to obtain parameters related to the soils of Rio Grande do Sul, which are used in soil-tool analysis, more specifically on mathematical models that allow the calculation of tractive effort for symmetric and narrow tools. Two of the main soils of Rio Grande do Sul, an Albaqualf and a Paleudult were studied. Equations that relate the cohesion, internal friction angle of the soil, adhesion, soil-tool friction angle and pre-compression stress as a function of water content in the soil were obtained, leading to important information for use of mathematical models for tractive effort calculation.
Resumo:
Estimates of broiler welfare have subjective character. Nowadays, researchers seek non-invasive features or indicators that may describe this condition in animal production. The aim of this study was to identify acoustic parameters to estimate broiler welfare using the following five vocalization acoustic parameters: energy, spectral centroid, bandwidth, first formant, and second formant. The database that generated the model was obtained from a field experiment with 432 broilers, which half were Cobb® and half, Ross® breed, from day 21 to 42, containing bird vocalizations under either welfare or stress conditions. The results of the experiment generated responses to the tested conditions of gender, genetic strain, and welfare. The proposed model was based on the specific response of mean weights for each situation of stress and well-being. From the results, a model was developed to estimate the welfare condition of broilers from the registered information linked to their vocalization.
Resumo:
The aim of this study was to generate maps of intense rainfall equation parameters using interpolated maximum intense rainfall data. The study area comprised Espírito Santo State, Brazil. A total of 59 intense rainfall equations were used to interpolate maximum intense rainfall, with a 1 x 1 km spatial resolution. Maximum intense rainfall was interpolated considering recurrence of 2; 5; 10; 20; 50 and 100 years, and duration of 10; 20; 30; 40; 50; 60; 120; 240; 360; 420; 660; 720; 900; 1,140; 1,380 and 1,440 minutes, resulting in 96 maps of maximum intense rainfall. The used interpolators were inverse distance weighting and ordinary kriging, for which significance level (p-value) and coefficient of determination (R²) were evaluated for the cross-validation data, choosing the method that presented better R² to generate maps. Finally, maps of maximum intense precipitation were used to estimate, cell by cell, the intense rainfall equation parameters. In comparison with literature data, the mean percentage error of estimated intense rainfall equations was 13.8%. Maps of spatialized parameters, obtained in this study, are of simple use; once they are georeferenced, they may be imported into any geographic information system to be used for a specific area of interest.
Resumo:
The Bartlett-Lewis Rectangular Pulse Modified (BLPRM) model simulates the precipitous slide in the hourly and sub-hourly and has six parameters for each of the twelve months of the year. This study aimed to evaluate the behavior of precipitation series in the duration of 15 min, obtained by simulation using the model BLPRM in situations: (a) where the parameters are estimated from a combination of statistics, creating five different sets; (b) suitability of the model to generate rain. To adjust the parameters were used rain gauge records of Pelotas/RS/Brazil, which statistics were estimated - mean, variance, covariance, autocorrelation coefficient of lag 1, the proportion of dry days in the period considered. The results showed that the parameters related to the time of onset of precipitation (λ) and intensities (μx) were the most stable and the most unstable were ν parameter, related to rain duration. The BLPRM model adequately represented the mean, variance, and proportion of the dry period of the series of precipitation lasting 15 min and, the time dependence of the heights of rain, represented autocorrelation coefficient of the first retardation was statistically less simulated series suitability for the duration of 15 min.
Resumo:
Based on experimental tests, it was obtained the equations for drying, equilibrium moisture content, latent heat of vaporization of water contained in the product and the equation of specific heat of cassava starch pellets, essential parameters for realizing modeling and mathematical simulation of mechanical drying of cassava starch for a new technique proposed, consisting of preformed by pelleting and subsequent artificial drying of starch pellets. Drying tests were conducted in an experimental chamber by varying the air temperature, relative humidity, air velocity and product load. The specific heat of starch was determined by differential scanning calorimetry. The generated equations were validated through regression analysis, finding an appropriate correlation of the data, which indicates that by using these equations, can accurately model and simulate the drying process of cassava starch pellets.
Resumo:
Nitrate is the main form of nitrogen associated with water contamination; the high mobility of this species in soil justifies the concern regarding nitrogen management in agricultural soils. Therefore, the objective of this research was to assess the effect of companion cation on nitrate displacement, by analyzing nitrate transport parameters through Breakthrough Curves (BTCs) and their settings made by numerical model (STANMOD). The experiment was carried out in the Soil and Water Quality Laboratory of the Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture in Piracicaba (SP), Brazil. It was performed using saturated soil columns in steady-state flow condition, in which two different sources of inorganic nitrate Ca(NO3)2 and NH4NO3 were applied at a concentration of 50 mg L-1 NO3-. Each column was filled with either a Red-Yellow Oxisol (S1) or an Alfisol (S2). Results are indicative that the companion ion had no effect on nitrate displacement. However, nitrate transport was influenced by soil texture, particle aggregation, solution speed in soil and organic matter presence. Nitrate mobility was higher in the Alfisol (S2).
Resumo:
ABSTRACT Precision agriculture adoption in Brazilian apple orchards is still incipient. This study aimed at evaluating the spatial variability of certain soil properties as soil density, soil penetration resistance, electrical conductivity, yield, and fruit quality in an apple orchard through digital mapping, as well as assessing the correlation between these factors by means of geostatistics, establishing management zones. Forty representative points were set within 2.5 hectares of apple orchard, wherein soil samples were collected and analyzed, besides measurements of fruit quality (Brix degree, size or diameter, pulp firmness and color) to generate an overall index quality. We concluded that the fruit quality indexes, when isolated, did not show strong spatial dependence, unlike the index of fruit quality (FQI), derived from a combination of these parameters, allowing orchard planning according to management zones based on quality.
Resumo:
Fuel cells are a promising alternative for clean and efficient energy production. A fuel cell is probably the most demanding of all distributed generation power sources. It resembles a solar cell in many ways, but sets strict limits to current ripple, common mode voltages and load variations. The typically low output voltage from the fuel cell stack needs to be boosted to a higher voltage level for grid interfacing. Due to the high electrical efficiency of the fuel cell, there is a need for high efficiency power converters, and in the case of low voltage, high current and galvanic isolation, the implementation of such converters is not a trivial task. This thesis presents galvanically isolated DC-DC converter topologies that have favorable characteristics for fuel cell usage and reviews the topologies from the viewpoint of electrical efficiency and cost efficiency. The focus is on evaluating the design issues when considering a single converter module having large current stresses. The dominating loss mechanism in low voltage, high current applications is conduction losses. In the case of MOSFETs, the conduction losses can be efficiently reduced by paralleling, but in the case of diodes, the effectiveness of paralleling depends strongly on the semiconductor material, diode parameters and output configuration. The transformer winding losses can be a major source of losses if the windings are not optimized according to the topology and the operating conditions. Transformer prototyping can be expensive and time consuming, and thus it is preferable to utilize various calculation methods during the design process in order to evaluate the performance of the transformer. This thesis reviews calculation methods for solid wire, litz wire and copper foil winding losses, and in order to evaluate the applicability of the methods, the calculations are compared against measurements and FEM simulations. By selecting a proper calculation method for each winding type, the winding losses can be predicted quite accurately before actually constructing the transformer. The transformer leakage inductance, the amount of which can also be calculated with reasonable accuracy, has a significant impact on the semiconductor switching losses. Therefore, the leakage inductance effects should also be taken into account when considering the overall efficiency of the converter. It is demonstrated in this thesis that although there are some distinctive differences in the loss distributions between the converter topologies, the differences in the overall efficiency can remain within a range of a few percentage points. However, the optimization effort required in order to achieve the high efficiencies is quite different in each topology. In the presence of practical constraints such as manufacturing complexity or cost, the question of topology selection can become crucial.
Resumo:
In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.