902 resultados para Distinguishing guise
Resumo:
The first pair of legs in males of some groups of diplopods is modified, having a large coxa and oral projecting prefemoral process; in the family Spirostreptidae (Spirostreptida) this structure has relevance on the genus level. This paper discusses the shape, presence, and absence of the prefemoral process in the genus Pseudonannolene (Pseudonannolenidae, Spirostreptida) and suggests that this structure is an important taxonomic character in this genus and can be used for distinguishing some species.
Resumo:
A new species of Acanthaceae, Staurogyne rubescens, is described and illustrated. It is endemic to the Brazilian moist forests on the eastern range of mountains named Serra do Mar and is thus far known only from the states of Rio de Janeiro and São Paulo. Staurogyne rubescens can be distinguished by its lax terminal racemes, with bracts and bracteoles that are foliaceous, and the flowers that have a pink calyx and red corolla. Staurogyne itatiaiae (Wawra) Leonard also has red flowers and occurs in the highlands of the Atlantic rain forest. The distinguishing characters for these two species are presented in tabular format.
Resumo:
Ventilatory frequency (VF) was investigated in the fish Nile tilapia, Oreochromis niloticus, subjected to confinement, electroshock or social stressor. Fish were allowed to acclimatize to tank conditions for 10 days (1 fish/aquarium). VF baseline was determined 5 days after adjustment had been started. At the 10th day of isolation, stressor effects on VF were assessed. The stressors were imposed during 60 min: pairing with a larger resident animal (social stressor), or gentle electroshock (AC, 20 V, 15 mA, 100 Hz for 1 min every 4 min), or space restriction (confinement). VF was quantified immediately after the end of the stressor imposition. Baseline of VF was not statistically different among groups. Social stressor clearly induced VF to increase, while an increased or decreased VF can be observed for both confinement and electroshock. However, fish tend to increase their VF in response to confinement and decrease in the case of electroshock. These results suggest that VF is a sensitive behavioural indicator for distinguishing stress responses in the fish Nile tilapia among different stressors. © 2006 Elsevier GmbH. All rights reserved.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Community ecology seeks to understand and predict the characteristics of communities that can develop under different environmental conditions, but most theory has been built on analytical models that are limited in the diversity of species traits that can be considered simultaneously. We address that limitation with an individual-based model to simulate assembly of fish communities characterized by life history and trophic interactions with multiple physiological tradeoffs as constraints on species performance. Simulation experiments were carried out to evaluate the distribution of 6 life history and 4 feeding traits along gradients of resource productivity and prey accessibility. These experiments revealed that traits differ greatly in importance for species sorting along the gradients. Body growth rate emerged as a key factor distinguishing community types and defining patterns of community stability and coexistence, followed by egg size and maximum body size. Dominance by fast-growing, relatively large, and fecund species occurred more frequently in cases where functional responses were saturated (i.e. high productivity and/or prey accessibility). Such dominance was associated with large biomass fluctuations and priority effects, which prevented richness from increasing with productivity and may have limited selection on secondary traits, such as spawning strategies and relative size at maturation. Our results illustrate that the distribution of species traits and the consequences for community dynamics are intimately linked and strictly dependent on how the benefits and costs of these traits are balanced across different conditions. © 2012 Elsevier B.V.
Resumo:
Inferences about leaf anatomical characteristics had largely been made by manually measuring diverse leaf regions, such as cuticle, epidermis and parenchyma to evaluate differences caused by environmental variables. Here we tested an approach for data acquisition and analysis in ecological quantitative leaf anatomy studies based on computer vision and pattern recognition methods. A case study was conducted on Gochnatia polymorpha (Less.) Cabrera (Asteraceae), a Neotropical savanna tree species that has high phenotypic plasticity. We obtained digital images of cross-sections of its leaves developed under different light conditions (sun vs. shade), different seasons (dry vs. wet) and in different soil types (oxysoil vs. hydromorphic soil), and analyzed several visual attributes, such as color, texture and tissues thickness in a perpendicular plane from microscopic images. The experimental results demonstrated that computational analysis is capable of distinguishing anatomical alterations in microscope images obtained from individuals growing in different environmental conditions. The methods presented here offer an alternative way to determine leaf anatomical differences. © 2013 Elsevier B.V.
Resumo:
Protein-protein interactions (PPIs) are essential for understanding the function of biological systems and have been characterized using a vast array of experimental techniques. These techniques detect only a small proportion of all PPIs and are labor intensive and time consuming. Therefore, the development of computational methods capable of predicting PPIs accelerates the pace of discovery of new interactions. This paper reports a machine learning-based prediction model, the Universal In Silico Predictor of Protein-Protein Interactions (UNISPPI), which is a decision tree model that can reliably predict PPIs for all species (including proteins from parasite-host associations) using only 20 combinations of amino acids frequencies from interacting and non-interacting proteins as learning features. UNISPPI was able to correctly classify 79.4% and 72.6% of experimentally supported interactions and non-interacting protein pairs, respectively, from an independent test set. Moreover, UNISPPI suggests that the frequencies of the amino acids asparagine, cysteine and isoleucine are important features for distinguishing between interacting and non-interacting protein pairs. We envisage that UNISPPI can be a useful tool for prioritizing interactions for experimental validation. © 2013 Valente et al.
Resumo:
The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10-12 M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing. © 2013 American Chemical Society.
Resumo:
We present a general model of brain function (the calcium wave model), distinguishing three processing modes in the perception-action cycle. The model provides an interpretation of the data from experiments on semantic memory conducted by the authors. © 2013 Pereira Jr, Santos and Barros.
Resumo:
Background:Lutzomyia longipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil.Methodology/Principal Findings:We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi.Conclusions/Significance:Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself. © 2013 Santos et al.
Resumo:
Hepatozoon spp. are commonly found infecting snakes. Since the latter are parasitized by diverse forms and data in the literature show divergence, we studied Hepatozoon spp. diversity on Crotalus durissus terrificus snakes using both molecular and morphological approaches. Naturally infected animals were employed. Blood was collected, blood smears were prepared and an aliquot was stored at -20. °C for DNA extraction. Five specimens of C. durissus terrificus were selected, each of them infected with one gamont type. Morphological and morphometric analyses of the found gamonts led to their grouping into three populations. For molecular characterization, seven oligonucleotide pairs that amplify distinct regions of rDNA gene were tested by adopting the PCR technique. Only the oligonucleotide pairs HepF300/Hep900 and HEMO1/HEMO2 were efficient in amplifying and distinguishing different isolates of Hepatozoon spp. from snakes. The better results were obtained when both oligonucleotide pairs were used in association. Based on the molecular and morphologic differences, three new species were proposed: Hepatozoon cuestensis sp. nov.; Hepatozoon cevapii sp. nov. and Hepatozoon massardii sp. nov. This is the first description of new Hepatozoon species from snakes, based on molecular characterization and morphological data, in South America. © 2013 Elsevier Inc.