995 resultados para Discovery (Law)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard Gibbs energy of formation of Rh203 at high temperature has been determined recently with high precision. The new data are significantly different from those given in thermodynamic compilations.Accurate values for enthalpy and entropy of formation at 298.15 K could not be evaluated from the new data,because reliable values for heat capacity of Rh2O3 were not available. In this article, a new measurement of the high temperature heat capacity of Rh2O3 using differential scanning calorimetry (DSC) is presented.The new values for heat capacity also differ significantly from those given in compilations. The information on heat capacity is coupled with standard Gibbs energy of formation to evaluate values for standard enthalpy and entropy of formation at 289.15 K using a multivariate analysis. The results suggest a major revision in thermodynamic data for Rh2O3. For example, it is recommended that the standard entropy of Rh203 at 298.15 K be changed from 106.27 J mol-' K-'given in the compilations of Barin and Knacke et al. to 75.69 J mol-' K". The recommended revision in the standard enthalpy of formation is from -355.64 kJ mol-'to -405.53 kJ mol".

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Generalized Distributive Law (GDL) is a message passing algorithm which can efficiently solve a certain class of computational problems, and includes as special cases the Viterbi's algorithm, the BCJR algorithm, the Fast-Fourier Transform, Turbo and LDPC decoding algorithms. In this paper GDL based maximum-likelihood (ML) decoding of Space-Time Block Codes (STBCs) is introduced and a sufficient condition for an STBC to admit low GDL decoding complexity is given. Fast-decoding and multigroup decoding are the two algorithms used in the literature to ML decode STBCs with low complexity. An algorithm which exploits the advantages of both these two is called Conditional ML (CML) decoding. It is shown in this paper that the GDL decoding complexity of any STBC is upper bounded by its CML decoding complexity, and that there exist codes for which the GDL complexity is strictly less than the CML complexity. Explicit examples of two such families of STBCs is given in this paper. Thus the CML is in general suboptimal in reducing the ML decoding complexity of a code, and one should design codes with low GDL complexity rather than low CML complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discoverymethods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies.Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we consider the process of discovering frequent episodes in event sequences. The most computationally intensive part of this process is that of counting the frequencies of a set of candidate episodes. We present two new frequency counting algorithms for speeding up this part. These, referred to as non-overlapping and non-inteleaved frequency counts, are based on directly counting suitable subsets of the occurrences of an episode. Hence they are different from the frequency counts of Mannila et al [1], where they count the number of windows in which the episode occurs. Our new frequency counts offer a speed-up factor of 7 or more on real and synthetic datasets. We also show how the new frequency counts can be used when the events in episodes have time-durations as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new proportional-navigation guidance law, called retro-proportional-navigation, is proposed. The guidance law is designed to intercept targets that are of higher speeds than the interceptor. This is a typical scenario in a ballistic target interception. The capture region analysis for both proportional-navigation and retro-proportional-navigation guidance laws are presented. The study shows that, at the cost of a higher intercept time, the retro-proportional-navigation guidance law demands lower terminal lateral acceleration than proportional navigation and can intercept high-velocity targets from many initial conditions that the classical proportional navigation cannot. Also, the capture region with the retro-proportional-navigation guidance law is shown to be larger compared with the classical proportional-navigation guidance law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discovery methods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies. Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quest for new drug targets in Plasmodium sp. has underscored malonyl CoA:ACP transacylase (PfFabD) of fatty acid biosynthetic pathway in apicoplast. In this study, a piggyback approach was employed for the receptor deorphanization using inhibitors of bacterial FabD enzymes. Due to the lack of crystal structure, theoretical model was constructed using the structural details of homologous enzymes. Sequence and structure analysis has localized the presence of two conserved pentapeptide motifs: GQGXG and GXSXG and five key invariant residues viz., Gln109, Ser193, Arg218, His305 and Gln354 characteristic of FabD enzyme. Active site mapping of PfFabD using substrate molecules has disclosed the spatial arrangement of key residues in the cavity. As structurally similar molecules exhibit similar biological activities, signature pharmacophore fingerprints of FabD antagonists were generated using 0D-3D descriptors for molecular similarity-based cluster analysis and to correlate with their binding profiles. It was observed that antagonists showing good geometrical fitness score were grouped in cluster-1, whereas those exhibiting high binding affinities in cluster-2. This study proves important to shed light on the active site environment to reveal the hotspot for binding with higher affinity and to narrow down the virtual screening process by searching for close neighbors of the active compounds.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article does not have an abstract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Advances in genomics technologies are providing a very large amount of data on genome-wide gene expression profiles, protein molecules and their interactions with other macromolecules and metabolites. Molecular interaction networks provide a useful way to capture this complex data and comprehend it. Networks are beginning to be used in drug discovery, in many steps of the modern discovery pipeline, with large-scale molecular networks being particularly useful for the understanding of the molecular basis of the disease. Areas covered: The authors discuss network approaches used for drug target discovery and lead identification in the drug discovery pipeline. By reconstructing networks of targets, drugs and drug candidates as well as gene expression profiles under normal and disease conditions, the paper illustrates how it is possible to find relationships between different diseases, find biomarkers, explore drug repurposing and study emergence of drug resistance. Furthermore, the authors also look at networks which address particular important aspects such as off-target effects, combination-targets, mechanism of drug action and drug safety. Expert opinion: The network approach represents another paradigm shift in drug discovery science. A network approach provides a fresh perspective of understanding important proteins in the context of their cellular environments, providing a rational basis for deriving useful strategies in drug design. Besides drug target identification and inferring mechanism of action, networks enable us to address new ideas that could prove to be extremely useful for new drug discovery, such as drug repositioning, drug synergy, polypharmacology and personalized medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a series of new glitazones incorporated with phenylalanine and tyrosine. All the compounds were tested for their in vitro glucose uptake activity using rat-hemidiaphragm, both in presence and absence of insulin. Six of the most active compounds from the in vitro screening were taken forward for their in vivo triglyceride and glucose lowering activity against dexamethazone induced hyperlipidemia and insulin resistance in Wistar rats. The liver samples of rats that received the most active compounds, 23 and 24, in the in vivo studies, were subjected to histopathological examination to assess their short term hepatotoxicity. The investigations on the in vitro glucose uptake, in vivo triglyceride and glucose lowering activity are described here along with the quantitative structure-activity relationships. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Facet-based sentiment analysis involves discovering the latent facets, sentiments and their associations. Traditional facet-based sentiment analysis algorithms typically perform the various tasks in sequence, and fail to take advantage of the mutual reinforcement of the tasks. Additionally,inferring sentiment levels typically requires domain knowledge or human intervention. In this paper, we propose aseries of probabilistic models that jointly discover latent facets and sentiment topics, and also order the sentiment topics with respect to a multi-point scale, in a language and domain independent manner. This is achieved by simultaneously capturing both short-range syntactic structure and long range semantic dependencies between the sentiment and facet words. The models further incorporate coherence in reviews, where reviewers dwell on one facet or sentiment level before moving on, for more accurate facet and sentiment discovery. For reviews which are supplemented with ratings, our models automatically order the latent sentiment topics, without requiring seed-words or domain-knowledge. To the best of our knowledge, our work is the first attempt to combine the notions of syntactic and semantic dependencies in the domain of review mining. Further, the concept of facet and sentiment coherence has not been explored earlier either. Extensive experimental results on real world review data show that the proposed models outperform various state of the art baselines for facet-based sentiment analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we discuss the issues related to word recognition in born-digital word images. We introduce a novel method of power-law transformation on the word image for binarization. We show the improvement in image binarization and the consequent increase in the recognition performance of OCR engine on the word image. The optimal value of gamma for a word image is automatically chosen by our algorithm with fixed stroke width threshold. We have exhaustively experimented our algorithm by varying the gamma and stroke width threshold value. By varying the gamma value, we found that our algorithm performed better than the results reported in the literature. On the ICDAR Robust Reading Systems Challenge-1: Word Recognition Task on born digital dataset, as compared to the recognition rate of 61.5% achieved by TH-OCR after suitable pre-processing by Yang et. al. and 63.4% by ABBYY Fine Reader (used as baseline by the competition organizers without any preprocessing), we achieved 82.9% using Omnipage OCR applied on the images after being processed by our algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of designing good space-time block codes (STBCs) with low maximum-likelihood (ML) decoding complexity has gathered much attention in the literature. All the known low ML decoding complexity techniques utilize the same approach of exploiting either the multigroup decodable or the fast-decodable (conditionally multigroup decodable) structure of a code. We refer to this well-known technique of decoding STBCs as conditional ML (CML) decoding. In this paper, we introduce a new framework to construct ML decoders for STBCs based on the generalized distributive law (GDL) and the factor-graph-based sum-product algorithm. We say that an STBC is fast GDL decodable if the order of GDL decoding complexity of the code, with respect to the constellation size, is strictly less than M-lambda, where lambda is the number of independent symbols in the STBC. We give sufficient conditions for an STBC to admit fast GDL decoding, and show that both multigroup and conditionally multigroup decodable codes are fast GDL decodable. For any STBC, whether fast GDL decodable or not, we show that the GDL decoding complexity is strictly less than the CML decoding complexity. For instance, for any STBC obtained from cyclic division algebras which is not multigroup or conditionally multigroup decodable, the GDL decoder provides about 12 times reduction in complexity compared to the CML decoder. Similarly, for the Golden code, which is conditionally multigroup decodable, the GDL decoder is only half as complex as the CML decoder.