946 resultados para Direct methanol fuel cell


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has long been stated that the K(+)-Cl(-) cotransporters (KCCs) are activated during cell swelling through dephosphorylation of their cytoplasmic domains by a protein phosphatase (PP) but that other enzymes are involved by targeting this PP or the KCCs directly. To date, however, the role of signaling intermediates in KCC regulation has been deduced from indirect evidence rather than in vitro phosphorylation studies, and examined after simulation of ion transport through cell swelling or N-ethylmaleimide treatment. In this study, the oocyte expression system was used to examine the effects of changes in cell volume (C(VOL)) and intracellular [Cl(-)] ([Cl(-)](i)) on the activity and phosphorylation levels (P(LEV)) of KCC4, and determine whether these effects are mediated by PP1 or phorbol myristate acetate (PMA)-sensitive effectors. We found that (1) low [Cl(-)](i) or low C(VOL) leads to decreased activity but increased P(LEV), (2) high C(VOL) leads to increased activity but no decrease in P(LEV) and (3) calyculin A (Cal A) or PMA treatment leads to decreased activity but no increase in P(LEV). Thus, we have shown for the first time that one of the KCCs can be regulated through direct phosphorylation, that changes in [Cl(-)](i) or C(VOL) modify the activity of signaling enzymes at carrier sites, and that the effectors directly involved do not include a Cal A-sensitive PP in contrast to the widely held view. J. Cell. Physiol. 219: 787-796, 2009. (c) 2009 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The galactose-alpha-1,3-galactose (alphaGal) carbohydrate epitope is expressed on porcine, but not human cells, and therefore represents a major target for preformed human anti-pig natural Abs (NAb). Based on results from pig-to-primate animal models, NAb binding to porcine endothelial cells will likely induce complement activation, lysis, and hyperacute rejection in pig-to-human xenotransplantation. Human NK cells may also contribute to innate immune responses against xenografts, either by direct recognition of activating molecules on target cells or by FcgammaRIII-mediated xenogeneic Ab-dependent cellular cytotoxicity (ADCC). The present study addressed the question as to whether the lack of alphaGal protects porcine endothelial cells from NAb/complement-induced lysis, direct xenogeneic NK lysis, NAb-dependent ADCC, and adhesion of human NK cells under shear stress. Homologous recombination, panning, and limiting dilution cloning were used to generate an alphaGal-negative porcine endothelial cell line, PED2*3.51. NAb/complement-induced xenogeneic lysis of PED2*3.51 was reduced by an average of 86% compared with the alphaGal-positive phenotype. PED2*3.51 resisted NK cell-mediated ADCC with a reduction of lysis ranging from 30 to 70%. However, direct xenogeneic lysis of PED2*3.51, mediated either by freshly isolated or IL-2-activated human NK cells or the NK cell line NK92, was not reduced. Furthermore, adhesion of IL-2-activated human NK cells did not rely on alphaGal expression. In conclusion, removal of alphaGal leads to a clear reduction in complement-induced lysis and ADCC, but does not resolve adhesion of NK cells and direct anti-porcine NK cytotoxicity, indicating that alphaGal is not a dominant target for direct human NK cytotoxicity against porcine cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Airborne particles entering the respiratory tract may interact with the apical plasma membrane (APM) of epithelial cells and enter them. Differences in the entering mechanisms of fine (between 0.1 μm and 2.5 μm) and ultrafine ( ≤ 0.1 μm) particles may be associated with different effects on the APM. Therefore, we studied particle-induced changes in APM surface area in relation to applied and intracellular particle size, surface and number. Methods Human pulmonary epithelial cells (A549 cell line) were incubated with various concentrations of different sized fluorescent polystyrene spheres without surface charge (∅ fine – 1.062 μm, ultrafine – 0.041 μm) by submersed exposure for 24 h. APM surface area of A549 cells was estimated by design-based stereology and transmission electron microscopy. Intracellular particles were visualized and quantified by confocal laser scanning microscopy. Results Particle exposure induced an increase in APM surface area compared to negative control (p < 0.01) at the same surface area concentration of fine and ultrafine particles a finding not observed at low particle concentrations. Ultrafine particle entering was less pronounced than fine particle entering into epithelial cells, however, at the same particle surface area dose, the number of intracellular ultrafine particles was higher than that of fine particles. The number of intracellular particles showed a stronger increase for fine than for ultrafine particles at rising particle concentrations. Conclusion This study demonstrates a particle-induced enlargement of the APM surface area of a pulmonary epithelial cell line, depending on particle surface area dose. Particle uptake by epithelial cells does not seem to be responsible for this effect. We propose that direct interactions between particle surface area and cell membrane cause the enlargement of the APM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The family of Eph receptor tyrosine kinases and their membrane bound ligands, the ephrins, are involved in a wide variety of morphogenic processes during embryonic development and adult tissue homeostasis. Receptor-ligand interaction requires direct cell-cell contact and results in forward and reverse signaling originating from the receptor and ligand, respectively. We have previously shown that EphB4 and ephrinB2 are differentially expressed during the development of the adult mammary parenchyma. Overexpression of EphB4 in the mammary epithelium of transgenic mice leads to perturbations in mammary epithelial morphology, motility and growth. To investigate the role of ephrinB2 signaling in mammary gland biology, we have established transgenic mice exhibiting conditional ephrinB2 knockout in the mammary epithelium. In homozygote double transgenic CreLox mice, specific knockout of ephrinB2 occurred in the mammary epithelium during the first pregnancy-lactating period. Abolishing ephrinB2 function led to severe interference with the architecture and functioning of the mammary gland at lactation. The morphology of the transgenic lactating glands resembled that of involuting controls, with decreased epithelial cell number and collapsed lobulo-alveolar structures. Accordingly, massive epithelial cell death and expression of involution-specific genes were observed. Interestingly, in parallel to cell death, significant cell proliferation was apparent, suggestive of tissue regeneration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of direct and indirect alcohol markers to evaluate alcohol consumption in clinical and forensic settings is increasingly recognized. While some markers are used to prove abstinence from ethanol, other markers are suitable for detection of alcohol misuse. Phosphatidyl ethanol (PEth) is ranked among the latter. There is only little information about the correlation between PEth and other currently used markers (ethyl glucuronide, ethyl sulfate, carbohydrate deficient transferrin, gamma-glutamyl transpeptidase, and methanol) and about their decline during detoxification. To get more information, 18 alcohol-dependent patients in withdrawal therapy were monitored for These parameters in blood and urine for up to 19 days. There was no correlation between the different markers. PEth showed a rapid decrease at the beginning of the intervention, a slow decline after the first few days, and could still be detected after 19 days of abstinence from ethanol.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foxp3+ regulatory T (Treg) cells are essential for the maintenance of immune homeostasis and tolerance. During viral infections, Treg cells can limit the immunopathology resulting from excessive inflammation, yet potentially inhibit effective antiviral T cell responses and promote virus persistence. We report here that the fast-replicating LCMV strain Docile triggers a massive expansion of the Treg population that directly correlates with the size of the virus inoculum and its tendency to establish a chronic, persistent infection. This Treg cell proliferation was greatly enhanced in IL-21R-/- mice and depletion of Treg cells partially rescued defective CD8+ T cell cytokine responses and improved viral clearance in some but not all organs. Notably, IL-21 inhibited Treg cell expansion in a cell intrinsic manner. Moreover, experimental augmentation of Treg cells driven by injection of IL-2/anti-IL-2 immune complexes drastically impaired the functionality of the antiviral T cell response and impeded virus clearance. As a consequence, mice became highly susceptible to chronic infection following exposure to low virus doses. These findings reveal virus-driven Treg cell proliferation as potential evasion strategy that facilitates T cell exhaustion and virus persistence. Furthermore, they suggest that besides its primary function as a direct survival signal for antiviral CD8+ T cells during chronic infections, IL-21 may also indirectly promote CD8+ T cell poly-functionality by restricting the suppressive activity of infection-induced Treg cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with many malignant and nonmalignant human diseases. Life-long latent EBV persistence occurs in blood-borne B lymphocytes, while EBV intermittently productively replicates in mucosal epithelia. Although several models have previously been proposed, the mechanism of EBV transition between these two reservoirs of infection has not been determined. In this study, we present the first evidence demonstrating that EBV latently infects a unique subset of blood-borne mononuclear cells that are direct precursors to Langerhans cells and that EBV both latently and productively infects oral epithelium-resident cells that are likely Langerhans cells. These data form the basis of a proposed new model of EBV transition from blood to oral epithelium in which EBV-infected Langerhans cell precursors serve to transport EBV to the oral epithelium as they migrate and differentiate into oral Langerhans cells. This new model contributes fresh insight into the natural history of EBV infection and the pathogenesis of EBV-associated epithelial disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Artemis, a member of the SNM1 gene family, is one of the six known components of the non-homologous end joining pathway. It is a multifunctional phospho-protein that has been shown to be modified by the phosphatidylinositol 3-kinases (PIKs) DNA-PKcs, ATM and ATR in response to a variety of cellular stresses. Artemis has important roles in V(D)J recombination, DNA double strand breaks repair and damage-induced cell-cycle checkpoint regulation. The detailed mechanism by which Artemis mediates its functions in these cellular pathways needs to be further elucidated. My work presented here demonstrates a new function for Artemis in cell cycle regulation as a component of Cullin-based E3 ligase complex. I show that Artemis interacts with Cul4A-DDB1 ligase complex via a direct interaction with the substrate-specific receptor DDB2, and deletion mapping analysis shows that part of the Snm1 domain of Artemis is responsible for this interaction. Additionally, Artemis also interacts with p27, a substrate of Cul4A-DDB1 complex, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. Furthermore, I show that the regulation of p27 by Artemis and DDB2 is critical for cell cycle progression in normally proliferating cells and in response to serum withdrawal. Finally, I provide evidence showing that Artemis may be also a part of other Cullin-based E3 ligase complexes, and it has a role in controlling p27 levels in response to different cellular stress, such as UV irradiation. These findings suggest a novel pathway to regulate p27 protein level and define a new function for Artemis as an effector of Cullin-based E3-ligase mediated ubiquitylation, and thus, a cell cycle regulator in proliferating cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the mammalian retina, AII amacrine cells are essential in the rod pathway for dark-adapted vision. But they also have a “day job”, to provide inhibitory inputs to certain OFF ganglion cells in photopic conditions. This is known as crossover inhibition. Physiological evidence from several different labs implies that AII amacrine cells provide direct input to certain OFF ganglion cells. However, previous EM analysis of the rabbit retina suggests that the dominant output of the AII amacrine cell in sublamina a goes to OFF cone bipolar cells (Strettoi et al., 1992). Two OFF ganglion cell types in the rabbit retina, OFF α and G9, were identified by a combination of morphological criteria such as dendritic field size, dye coupling, mosaic properties and stratification depth. The AII amacrine cells (AIIs) were labeled with an antibody against calretinin and glycine receptors were marked with an antibody against the α1 subunit. This material was analyzed by triple-label confocal microscopy. We found the lobules of AIIs made close contacts at many points along the dendrites of individual OFF α and G9 ganglion cells. At these potential synaptic sites, we also found punctate labeling for the glycine receptor α1 subunit. The presence of a post-synaptic marker such as the α1 glycine receptor at contact points between AII lobules and OFF ganglion cells supports a direct inhibitory input from AIIs. This pathway provides for crossover inhibition in the rabbit retina whereby light onset provides an inhibitory signal to OFF α and G9 ganglion cells. Thus, these two OFF ganglion cell types receive a mixed excitatory and inhibitory drive in response to light stimulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesenchymal stromal cell (MSC) therapy has shown promise for the treatment of traumatic brain injury (TBI). Although the mechanism(s) by which MSCs offer protection is unclear, initial in vivo work has suggested that modulation of the locoregional inflammatory response could explain the observed benefit. We hypothesize that the direct implantation of MSCs into the injured brain activates resident neuronal stem cell (NSC) niches altering the intracerebral milieu. To test our hypothesis, we conducted initial in vivo studies, followed by a sequence of in vitro studies. In vivo: Sprague-Dawley rats received a controlled cortical impact (CCI) injury with implantation of 1 million MSCs 6 h after injury. Brain tissue supernatant was harvested for analysis of the proinflammatory cytokine profile. In vitro: NSCs were transfected with a firefly luciferase reporter for NFkappaB and placed in contact culture and transwell culture. Additionally, multiplex, quantitative PCR, caspase 3, and EDU assays were completed to evaluate NSC cytokine production, apoptosis, and proliferation, respectively. In vivo: Brain supernatant analysis showed an increase in the proinflammatory cytokines IL-1alpha, IL-1beta, and IL-6. In vitro: NSC NFkappaB activity increased only when in contact culture with MSCs. When in contact with MSCs, NSCs show an increase in IL-6 production as well as a decrease in apoptosis. Direct implantation of MSCs enhances neuroprotection via activation of resident NSC NFkappaB activity (independent of PI3 kinase/AKT pathway) leading to an increase in IL-6 production and decrease in apoptosis. In addition, the observed NFkappaB activity depends on direct cell contact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FtsE and FtsX, which are widely conserved homologs of ABC transporters and interact with each other, have important but unknown functions in bacterial cell division. Coimmunoprecipitation of Escherichia coli cell extracts revealed that a functional FLAG-tagged version of FtsE, the putative ATP-binding component, interacts with FtsZ, the bacterial tubulin homolog required to assemble the cytokinetic Z ring and recruit the components of the divisome. This interaction is independent of FtsX, the predicted membrane component of the ABC transporter, which has been shown previously to interact with FtsE. The interaction also occurred independently of FtsA or ZipA, two other E. coli cell division proteins that interact with FtsZ. In addition, FtsZ copurified with FLAG-FtsE. Surprisingly, the conserved C-terminal tail of FtsZ, which interacts with other cell division proteins, such as FtsA and ZipA, was dispensable for interaction with FtsE. In support of a direct interaction with FtsZ, targeting of a green fluorescent protein (GFP)-FtsE fusion to Z rings required FtsZ, but not FtsA. Although GFP-FtsE failed to target Z rings in the absence of ZipA, its localization was restored in the presence of the ftsA* bypass suppressor, indicating that the requirement for ZipA is indirect. Coexpression of FLAG-FtsE and FtsX under certain conditions resulted in efficient formation of minicells, also consistent with an FtsE-FtsZ interaction and with the idea that FtsE and FtsX regulate the activity of the divisome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endotoxemia from sepsis can injure the gastrointestinal tract through mechanisms that have not been fully elucidated. We have shown that LPS induces an increase in gastric permeability in parallel with the luminal appearance of secretory phospholipase A2 (sPLA2) and its product, lysophosphatidylcholine (lyso-PC). We proposed that sPLA2 acted on the gastric hydrophobic barrier, composed primarily of phosphatidylcholine (PC), to degrade it and produce lyso-PC, an agent that is damaging to the mucosa. In the present study, we have tested whether lyso-PC and/or sPLA2 have direct damaging effects on the hydrophobic barriers of synthetic and mucosal surfaces. Rats were administered LPS (5 mg/kg, i.p.), and gastric contents were collected 5 h later for analysis of sPLA2 and lyso-PC content. Using these measured concentrations, direct effects of sPLA2 and lyso-PC were determined on (a) surface hydrophobicity as detected with an artificial PC surface and with intact gastric mucosa (contact angle analysis) and (b) cell membrane disruption of gastric epithelial cells (AGS). Both lyso-PC and sPLA2 increased significantly in the collected gastric juice of LPS-treated rats. Using similar concentrations to the levels in gastric juice, the contact angle of PC-coated slides declined after incubation with either pancreatic sPLA2 or lyso-PC. Similarly, gastric contact angles seen in control rats were significantly decreased in sPLA2 and lyso-PC-treated rats. In addition, we observed dose-dependent injurious effects of both lyso-PC and sPLA2 in gastric AGS cells. An LPS-induced increase in sPLA2 activity in the gastric lumen and its product, lyso-PC, are capable of directly disrupting the gastric hydrophobic layer and may contribute to gastric barrier disruption and subsequent inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gap junction proteins form the substrate for electrical coupling between neurons. These electrical synapses are widespread in the CNS and serve a variety of important functions. In the retina, connexin 36 (Cx36) gap junctions couple AII amacrine cells and are a requisite component of the high-sensitivity rod photoreceptor pathway. AII amacrine cell coupling strength is dynamically regulated by background light intensity, and uncoupling is thought to be mediated by dopamine signaling via D(1)-like receptors. One proposed mechanism for this uncoupling involves dopamine-stimulated phosphorylation of Cx36 at regulatory sites, mediated by protein kinase A. Here we provide evidence against this hypothesis and demonstrate a direct relationship between Cx36 phosphorylation and AII amacrine cell coupling strength. Dopamine receptor-driven uncoupling of the AII network results from protein kinase A activation of protein phosphatase 2A and subsequent dephosphorylation of Cx36. Protein phosphatase 1 activity negatively regulates this pathway. We also find that Cx36 gap junctions can exist in widely different phosphorylation states within a single neuron, implying that coupling is controlled at the level of individual gap junctions by locally assembled signaling complexes. This kind of synapse-by-synapse plasticity allows for precise control of neuronal coupling, as well as cell-type-specific responses dependent on the identity of the signaling complexes assembled.