889 resultados para Dinamic Stability in Power Systems
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
This thesis discusses market design and regulation in electricity systems, focusing on the information exchange of the regulated grid firm and the generation firms as well as the regulation of the grid firm. In the first chapter, an economic framework is developed to consistently analyze different market designs and the information exchange between the grid firm and the generation firms. Perfect competition between the generation firms and perfect regulation of the grid firm is assumed. A numerical algorithm is developed and its feasibility demonstrated on a large-scale problem. The effects of different market designs for the Central Western European (CWE) region until 2030 are analyzed. In the second chapter, the consequences of restricted grid expansion within the current market design in the CWE region until 2030 are analyzed. In the third chapter the assumption of efficient markets is modified. The focus of the analysis is then, whether and how inefficiencies in information availability and processing affect different market designs. For different parameter settings, nodal and zonal pricing are compared regarding their welfare in the spot and forward market. In the fourth chapter, information asymmetries between the regulator and the regulated firm are analyzed. The optimal regulatory strategy for a firm, providing one output with two substitutable inputs, is defined. Thereby, one input and the absolute quantity of inputs is not observable for the regulator. The result is then compared to current regulatory approaches.
Resumo:
We consider an LTE network where a secondary user acts as a relay, transmitting data to the primary user using a decode-and-forward mechanism, transparent to the base-station (eNodeB). Clearly, the relay can decode symbols more reliably if the employed precoder matrix indicators (PMIs) are known. However, for closed loop spatial multiplexing (CLSM) transmit mode, this information is not always embedded in the downlink signal, leading to a need for effective methods to determine the PMI. In this thesis, we consider 2x2 MIMO and 4x4 MIMO downlink channels corresponding to CLSM and formulate two techniques to estimate the PMI at the relay using a hypothesis testing framework. We evaluate their performance via simulations for various ITU channel models over a range of SNR and for different channel quality indicators (CQIs). We compare them to the case when the true PMI is known at the relay and show that the performance of the proposed schemes are within 2 dB at 10% block error rate (BLER) in almost all scenarios. Furthermore, the techniques add minimal computational overhead over existent receiver structure. Finally, we also identify scenarios when using the proposed precoder detection algorithms in conjunction with the cooperative decode-and-forward relaying mechanism benefits the PUE and improves the BLER performance for the PUE. Therefore, we conclude from this that the proposed algorithms as well as the cooperative relaying mechanism at the CMR can be gainfully employed in a variety of real-life scenarios in LTE networks.
Resumo:
We show a simulation model for capacity analysis in mobile systems using a geographic information system (GIS) based tool, used for coverage calculations and frequency assignment, and MATLAB. The model was developed initially for “narrowband” CDMA and TDMA, but was modified for WCDMA. We show also some results for a specific case in “narrowband” CDMA
Resumo:
In the landslide-prone area near the Nice international airport, southeastern France, an interdisciplinary approach is applied to develop realistic lithological/geometrical profiles and geotechnical/strength sub-seafloor models. Such models are indispensable for slope stability assessments using limit equilibrium or finite element methods. Regression analyses, based on the undrained shear strength (su) of intact gassy sediments are used to generate a sub-seafloor strength model based on 37 short dynamic and eight long static piezocone penetration tests, and laboratory experiments on one Calypso piston and 10 gravity cores. Significant strength variations were detected when comparing measurements from the shelf and the shelf break, with a significant drop in su to 5.5 kPa being interpreted as a weak zone at a depth between 6.5 and 8.5 m below seafloor (mbsf). Here, a 10% reduction of the in situ total unit weight compared to the surrounding sediments is found to coincide with coarse-grained layers that turn into a weak zone and detachment plane for former and present-day gravitational, retrogressive slide events, as seen in 2D chirp profiles. The combination of high-resolution chirp profiles and comprehensive geotechnical information allows us to compute enhanced 2D finite element slope stability analysis with undrained sediment response compared to previous 2D numerical and 3D limit equilibrium assessments. Those models suggest that significant portions (detachment planes at 20 m or even 55 mbsf) of the Quaternary delta and slope apron deposits may be mobilized. Given that factors of safety are equal or less than 1 when further considering the effect of free gas, a high risk for a landslide event of considerable size off Nice international airport is identified
Resumo:
The food of the Nile perch has changed since its introduction into Lakes Victoria, Kyoga and Nabugabo and stabilized on Caridina nilotica, Anisopteran nymphs, Rastrineobola argentea, Nile perch juveniles, and tilapiines. For the Nile perch to sustain production in these lakes, its is important that these prey species are properly managed.
Resumo:
In this work, we study the Zeeman splitting effects in the parallel magnetic field versus temperature phase diagram of two-dimensional superconductors with one graphene-like band and the orbital effects of perpendicular magnetic fields in isotropic two-dimensional semi-metallic superconductors. We show that when parallel magnetic fields are applied to graphene and as the intraband interaction decreases to a critical value, the width of the metastability region present in the phase diagram decreases, vanishing completely at that critical value. In the case of two-band superconductors with one graphene-like band, a new critical interaction, associated primarily with the graphene-like band, is required in order for a second metastability region to be present in the phase diagram. For intermediate values of this interaction, a low-temperature first-order transition line bifurcates at an intermediate temperature into a first-order transition between superconducting phases and a second-order transition line between the normal and the superconducting states. In our study on the upper critical fields in generic semi-metallic superconductors, we find that the pair propagator decays faster than that of a superconductor with a metallic band. As result, the zero field band gap equation does not have solution for weak intraband interactions, meaning that there is a critical intraband interaction value in order for a superconducting phase to be present in semi-metallic superconductors. Finally, we show that the out-of-plane critical magnetic field versus temperature phase diagram displays a positive curvature, contrasting with the parabolic-like behaviour typical of metallic superconductors.
Resumo:
Sustainability in software system is still a new practice that most software developers and companies are trying to incorporate into their software development lifecycle and has been largely discussed in academia. Sustainability is a complex concept viewed from economic, environment and social dimensions with several definitions proposed making sometimes the concept of sustainability very fuzzy and difficult to apply and assess in software systems. This has hindered the adoption of sustainability in the software industry. A little research explores sustainability as a quality property of software products and services to answer questions such as; How to quantify sustainability as a quality construct in the same way as other quality attributes such as security, usability and reliability? How can it be applied to software systems? What are the measures and measurement scale of sustainability? The Goal of this research is to investigate the definitions, perceptions and measurement of sustainability from the quality perspective. Grounded in the general theory of software measurement, the aim is to develop a method that decomposes sustainability in factors, criteria and metrics. The Result is a method to quantify and access sustainability of software systems while incorporating management and users concern. Conclusion: The method will empower the ability of companies to easily adopt sustainability while facilitating its integration to the software development process and tools. It will also help companies to measure sustainability of their software products from economic, environmental, social, individual and technological dimension.
Resumo:
A new procedure was developed in this study, based on a system equipped with a cellulose membrane and a tetraethylenepentamine hexaacetate chelator (MD-TEPHA) for in situ characterization of the lability of metal species in aquatic systems. To this end, the DM-TEPHA system was prepared by adding TEPHA chelator to cellulose bags pre-purified with 1.0 mol L-1 of HCl and NaOH solutions. After the MD-TEPHA system was sealed, it was examined in the laboratory to evaluate the influence of complexation time (0-24 h), pH (3.0, 4.0, 5.0, 6.0 and 7.0), metal ions (Cu, Cd, Fe, Mn and Ni) and concentration of organic matter (15, 30 and 60 mg L-1) on the relative lability of metal species by TEPHA chelator. The results showed that Fe and Cu metals were complexed more slowly by TEPHA chelator in the MD-TEPHA system than were Cd, Ni and Mn in all pH used. It was also found that the pH strongly influences the process of metal complexation by the MD-TEPHA system. At all the pH levels, Cd, Mn and Ni showed greater complexation with TEPHA chelator (recovery of about 95-75%) than did Cu and Fe metals. Time also affects the lability of metal species complexed by aquatic humic substances (AHS); while Cd, Ni and Mn showed a faster kinetics, reaching equilibrium after about 100 min, and Cu and Fe approached equilibrium after 400 min. Increasing the AHS concentration decreases the lability of metal species by shifting the equilibrium to AHS-metal complexes. Our results indicate that the system under study offers an interesting alternative that can be applied to in situ experiments for differentiation of labile and inert metal species in aquatic systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Dynamically reconfigurable hardware is a promising technology that combines in the same device both the high performance and the flexibility that many recent applications demand. However, one of its main drawbacks is the reconfiguration overhead, which involves important delays in the task execution, usually in the order of hundreds of milliseconds, as well as high energy consumption. One of the most powerful ways to tackle this problem is configuration reuse, since reusing a task does not involve any reconfiguration overhead. In this paper we propose a configuration replacement policy for reconfigurable systems that maximizes task reuse in highly dynamic environments. We have integrated this policy in an external taskgraph execution manager that applies task prefetch by loading and executing the tasks as soon as possible (ASAP). However, we have also modified this ASAP technique in order to make the replacements more flexible, by taking into account the mobility of the tasks and delaying some of the reconfigurations. In addition, this replacement policy is a hybrid design-time/run-time approach, which performs the bulk of the computations at design time in order to save run-time computations. Our results illustrate that the proposed strategy outperforms other state-ofthe-art replacement policies in terms of reuse rates and achieves near-optimal reconfiguration overhead reductions. In addition, by performing the bulk of the computations at design time, we reduce the execution time of the replacement technique by 10 times with respect to an equivalent purely run-time one.