975 resultados para Diffusion Reaction Dynamics
Resumo:
We study the quantum dynamics of the emission of multimodal polarized light in light emitting devices (LED) due to spin polarized carriers injection. We present the equations for photon number and carrier numbers, and calculate the polarisation degree of the light generated by LED. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We consider a two-component Bose-Einstein condensate in two spatially localized modes of a double-well potential, with periodic modulation of the tunnel coupling between the two modes. We treat the driven quantum field using a two-mode expansion and define the quantum dynamics in terms of the Floquet Operator for the time periodic Hamiltonian of the system. It has been shown that the corresponding semiclassical mean-field dynamics can exhibit regions of regular and chaotic motion. We show here that the quantum dynamics can exhibit dynamical tunneling between regions of regular motion, centered on fixed points (resonances) of the semiclassical dynamics.
Resumo:
The spatial and breeding dynamics of koalas in sub-tropical woodlands at Blair Athol in central Queensland were intensively monitored between 1993 and 1998. Genetic relationships among koalas at this locality were studied to determine the breeding dynamics of males, including whether 'resident' or 'transient' males dominate as sires. Males and females were radio-collared and tracked periodically throughout each year of the study. Genotypes from hypervariable microsatellite loci identified uniquely all individuals and were used to analyse parentage as well as to determine population genetic parameters when compared with other regional localities. Koalas at Blair Athol comprise a population in genetic equilibrium. Gene diversity estimates show the population to be similar to other populations found in similar habitat in the region, and estimates of genetic differentiation among four regional populations showed that gene flow conforms to a model of isolation by distance. Analysis of parentage found that both resident and transient males sired about equal numbers of offspring. Familial DNA analysis revealed multiple paternities of successive young in this population. The conclusion from this study is that 'resident' status among males does not confer any advantage for parentage.
Resumo:
Eucalyptus savannas on low nutrient soils are being extensively cleared in Queensland. In this paper we provide background information relevant to understanding nutrient (particularly nitrogen) dynamics in sub/tropical savanna, and review the available evidence relevant to understanding the potential impact of clearing Eucalyptus savanna on nutrient relations. The limited evidence presently available can be used to argue for the extreme positions that: (i) woody vegetation competes with grasses Cor resources. and tree/shrub clearing improves pasture production, (ii) woody vegetation benefits pasture production. At present, the lack of fundamental knowledge about Australian savanna nutrient relations makes accurate predictions about medium- and long-term effects of clearing on nutrient relations in low nutrient savannas difficult. The future of cleared savannas will differ if herbaceous species maintain all functions that woody vegetation has previously held, or if woody species have functions distinct from those of herbaceous vegetation. Research suggests that savanna soils are susceptible to nitrate leaching, and that trees improve the nutrient status of savanna soils in some situations. The nitrogen capital of cleared savanna is at risk if mobile ions are not captured efficiently by the vegetation. and nitrogen input via N-2 fixation from vegetation and microbiotic crusts is reduced. In order to predict clearing effects on savanna nutrient relations, research should be directed to answering (i) how open or closed nutrient cycles are in natural and cleared savanna, (ii) which functions are performed by savanna constituents such as woody and herbaceous vegetation, native and exotic plant species. termites, and microbiotic 7 crusts in relation to nutrient cycles. In the absence of detailed knowledge about savanna functioning, clearing carries the risk of promoting continuous nutrient depiction.
Resumo:
As the United States and Australia struggle with contemporary crises over competing uses of rapidly depleting natural resources, there are striking parallels between American Indian and Australian Aboriginal communities demanding a place at the management table and offering culturally based understandings of and solutions for the ecosystems at risk. These efforts to integrate indigenous knowledge into mainstream natural resource management are part of larger legal and political debates over land tenure, the locus of control, indigenous self-governance, and holistic ecosystems management.
Resumo:
The self-diffusion coefficients for water in a series of copolymers of 2-hydroxyethyl methacrylate, HEMA, and tetrahydrofurfuryl methacrylate, THFMA, swollen with water to their equilibrium states have been studied at 310 K using PFG-NMR. The self-diffusion coefficients calculated from the Stejskal-Tanner equation, D-obs, for all of the hydrated polymers were found to be dependent on the NMR storage time, as a result of spin exchange between the proton reservoirs of the water and the polymers, reaching an equilibrium plateau value at long storage times. The true values of the diffusion coefficients were calculated from the values of D-obs, in the plateau regions by applying a correction for the fraction of water protons present, obtained from the equilibrium water contents of the gels. The true self-diffusion coefficient for water in polyHEMA obtained at 310 K by this method was 5.5 x 10(-10) m(2) s(-1). For the copolymers containing 20% HEMA or more a single value of the self-diffusion coefficient was found, which was somewhat larger than the corresponding values obtained for the macroscopic diffusion coefficient from sorption measurements. For polyTHFMA and copolymers containing less than 20% HEMA, the PFG-NMR stimulated echo attenuation decay curves and the log-attenuation plots were characteristic of the presence of two diffusing water species. The self-diffusion coefficients of water in the equilibrium-hydrated copolymers were found to be dependent on the copolymer composition, decreasing with increasing THFMA content.
Propagation of nonstationary curved and stretched premixed flames with multistep reaction mechanisms
Resumo:
The propagation speed of a thin premixed flame disturbed by an unsteady fluid flow of a larger scale is considered. The flame may also have a general shape but the reaction zone is assumed to be thin compared to the flame thickness. Unlike in preceding publications, the presented asymptotic analysis is performed for a general multistep reaction mechanism and, at the same time, the flame front is curved by the fluid flow. The resulting equations define the propagation speed of disturbed flames in terms of the properties of undisturbed planar flames and the flame stretch. Special attention is paid to the near-equidiffusion limit. In this case, the flame propagation speed is shown to depend on the effective Zeldovich number Z(f) , and the flame stretch. Unlike the conventional Zeldovich number, the effective Zeldovich number is not necessarily linked directly to the activation energies of the reactions. Several examples of determining the effective Zeldovich number for reduced combustion mechanisms are given while, for realistic reactions, the effective Zeldovich number is determined from experiments. Another feature of the present approach is represented by the relatively simple asymptotic technique based on the adaptive generalized curvilinear system of coordinates attached to the flame (i.e., intrinsic disturbed flame equations [IDFE]).
Resumo:
The conditions under which blink startle facilitation can be found in anticipation of a reaction time task were investigated to resolve inconsistent findings across previous studies. Four groups of participants (n = 64) were presented with two visual stimuli, one predicting a reaction time task (S+) and the second presented alone (S-). Participants were asked to make a speeded response to the offset of the S+ (S1 paradigm) or were asked to respond to a tactile stimulus presented at the offset of the S+ (S1-S2 paradigm). Half of the participants in each paradigm condition received performance feedback. Overall, blink latency shortening and magnitude facilitation were larger during S+ than during S-. More detailed analyses, however, found these differences to be reliable only in the Feedback conditions. Ratings of S+ pleasantness did not change across the experiment. Electrodermal responses to S+ were larger than to S- in all groups with differential electrodermal responding emerging earlier in the S1 paradigm. Taken together, the data support the notion that startle facilitation can occur during non-aversive Pavlovian conditioning. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We present an efficient and robust method for calculating state-to-state reaction probabilities utilising the Lanczos algorithm for a real symmetric Hamiltonian. The method recasts the time-independent Artificial Boundary Inhomogeneity technique recently introduced by Jang and Light (J. Chem. Phys. 102 (1995) 3262) into a tridiagonal (Lanczos) representation. The calculation proceeds at the cost of a single Lanczos propagation for each boundary inhomogeneity function and yields all state-to-state probabilities (elastic, inelastic and reactive) over an arbitrary energy range. The method is applied to the collinear H + H-2 reaction and the results demonstrate it is accurate and efficient in comparison with previous calculations. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of H2S --> SH + H have been investigated quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). Resonance energies, widths (rates), and product state distributions have been obtained. Both dissociation rates and product state distributions of SH show, strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and product state distributions are compared to the predictions of quantum phase space theory.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.