987 resultados para Diffraction-free receiver


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper explores the synthesis of oxide-free nanoparticles of Ag and Cu through laser ablation of pure targets under aqueous medium and tuning the quality and size through addition of Polyvinylpyrrolidone (PVP) in the medium. The size distribution of nanoparticles reduces from 37 +/- 30 nm and 13 +/- 5 nm to 32 +/- 12 nm and 4 +/- 1 nm for Ag and Cu with changes in PVP concentration from 0.00 to 0.02 M, respectively. Irregular shaped particles of Ag with Ag2O phase and a Cu-Cu2O core-shell particles form without the addition of PVP, while oxide layer is absent with 0.02 M of PVP. The recent understanding of the mechanism of particle formation during laser ablation under liquid medium allows us to rationalize our observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Friction stir processing (FSP) is emerging as one of the most competent severe plastic deformation (SPD) method for producing bulk ultra-fine grained materials with improved properties. Optimizing the process parameters for a defect free process is one of the challenging aspects of FSP to mark its commercial use. For the commercial aluminium alloy 2024-T3 plate of 6 mm thickness, a bottom-up approach has been attempted to optimize major independent parameters of the process such as plunge depth, tool rotation speed and traverse speed. Tensile properties of the optimum friction stir processed sample were correlated with the microstructural characterization done using Scanning Electron Microscope (SEM) and Electron Back-Scattered Diffraction (EBSD). Optimum parameters from the bottom-up approach have led to a defect free FSP having a maximum strength of 93% the base material strength. Micro tensile testing of the samples taken from the center of processed zone has shown an increased strength of 1.3 times the base material. Measured maximum longitudinal residual stress on the processed surface was only 30 MPa which was attributed to the solid state nature of FSP. Microstructural observation reveals significant grain refinement with less variation in the grain size across the thickness and a large amount of grain boundary precipitation compared to the base metal. The proposed experimental bottom-up approach can be applied as an effective method for optimizing parameters during FSP of aluminium alloys, which is otherwise difficult through analytical methods due to the complex interactions between work-piece, tool and process parameters. Precipitation mechanisms during FSP were responsible for the fine grained microstructure in the nugget zone that provided better mechanical properties than the base metal. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapid, metal-free and solvent-free (very low loading of solvent in few cases) reaction conditions for synthesizing thioamides and amides using a Bronsted super acid such as triflic acid has been developed. This method shows a broad substrate scope with a variety of electron-rich arenes including thiophene derivatives. The reaction works well for both aromatic as well as aliphatic isothiocyanates. Most of the thioamides are obtained in excellent yields in short reaction times and in most of the examples, a simple work up procedure has been developed which does not require further purification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A label-free biosensor has been fabricated using a reduced graphene oxide (RGO) and anatase titania (ant-TiO2) nanocomposite, electrophoretically deposited onto an indium tin oxide coated glass substrate. The RGO-ant-TiO2 nanocomposite has been functionalized with protein (horseradish peroxidase) conjugated antibodies for the specific recognition and detection of Vibrio cholerae. The presence of Ab-Vc on the RGO-ant-TiO2 nanocomposite has been confirmed using electron microscopy, Fourier transform infrared spectroscopy and electrochemical techniques. Electrochemical studies relating to the fabricated Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode have been conducted to investigate the binding kinetics. This immunosensor exhibits improved biosensing properties in the detection of Vibrio cholerae, with a sensitivity of 18.17 x 10(6) F mol(-1) L-1 m(-2) in the detection range of 0.12-5.4 nmol L-1, and a low detection limit of 0.12 nmol L-1. The association (k(a)), dissociation (k(d)) and equilibrium rate constants have been estimated to be 0.07 nM, 0.002 nM and 0.41 nM, respectively. This Ab-Vc/RGO-ant-TiO2/ITO immunoelectrode could be a suitable platform for the development of compact diagnostic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-phone based imaging flow cytometry can be realized by flowing cells through the microfluidic devices, and capturing their images with an optically enhanced camera of the cell-phone. Throughput in flow cytometers is usually enhanced by increasing the flow rate of cells. However, maximum frame rate of camera system limits the achievable flow rate. Beyond this, the images become highly blurred due to motion-smear. We propose to address this issue with coded illumination, which enables recovery of high-fidelity images of cells far beyond their motion-blur limit. This paper presents simulation results of deblurring the synthetically generated cell/bead images under such coded illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the effect of thin silicon nitride (Si3N4) induced tensile stress on the structural release of 200nm thick SOI beam, in the surface micro-machining process. A thin (20nm / 100nm) LPCVD grown Si3N4 is shown to significantly enhance the yield of released beam in wet release technique. This is especially prominent with increase in beam length, where the beams have higher tendency for stiction. We attribute this yield enhancement to the nitride induced tensile stress, as verified by buckling tendency and resonance frequency data obtained from optical profilometry and laser doppler vibrometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure, ferroelectric, and piezoelectric behaviors of the Ba(Ti1-xCex)O-3 solid solution have been investigated at close composition intervals in the dilute concentration regime. Ce concentration as low as 2 mol. % induces tetragonal-orthorhombic instability and coexistence of the phases, leading to enhanced high-field strain and direct piezoelectric response. Detailed structural analysis revealed tetragonal + orthorhombic phase coexistence for x = 0.02, orthorhombic for 0.03 <= x <= 0.05, and orthorhombic + rhombohedral for 0.06 <= x <= 0.08. The results suggest that Ce-modified BaTiO3 is a potential lead-free piezoelectric material. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents the synthesis of a new class of gamma-gamma' cobalt-based superalloy that is free of tungsten as an alloying addition. It has much lower density and higher specific strength than the existing cobalt-based superalloys. The current superalloys have a base composition of Co-10Al and are further tuned by the addition of a binary combination of molybdenum and niobium, with the optimum composition of Co-10Al-5Mo-2Nb. The solvus temperature of the alloy (866 degrees C) can be further enhanced above 950 C by the addition of Ni to give the form Co-xNi-10Al-5Mo-2Nb, where x can be from 0 to 30 at.%. After heat treatment, these alloys exhibit a duplex microstructure with coherent cuboidal L1(2)-ordered precipitates (gamma') throughout the face-centred cubic matrix (gamma), yielding a microstructure that is very similar to nickel-based superalloys as well as recently developed Co-Al-W-based alloys. We show that the stability of the gamma' phase improves significantly with the nickel addition, which can be attributed to the increase in solvus temperature. A very high specific 0.2% proof stress of 94.3 MPa g(-1) cm(-3) at room temperature and 63.8 MPa g(-1) cm(-3) at 870 degrees C were obtained for alloy Co-30Ni-10Al-5Mo-2Nb. The remarkably high specific strength of these alloys makes this class of alloy a promising material for use at high temperature, including gas turbine applications. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first report of a tungsten-free cobalt-based superalloy having a composition Co-10Al-5Mo-2Nb. The alloy is strengthened by cuboidal precipitates of metastable Co-3(Al,Mo,Nb) distributed throughout the microstructure. The precipitates are coherent with the face-centred cubic gamma-Co matrix and possess ordered Ll(2) structure. The microstructure is identical to the popular gamma-gamma' type nickel-based superalloys and that of recently reported Co-Al-W-based alloys. Being tungsten free, the reported alloy has higher specific proof stress compared to existing cobalt-based superalloys. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen storage capacity of Tin-1B (n = 3-7) clusters is studied and compared with that of the pristine Ti-n (n = 3-7), using density functional theory (DFT) based calculations. Among these clusters, Ti3B shows the most significant enhancement in the storage capacity by adsorbing 12 H-2, out of which three are dissociated and the other nine are stored as dihydrogen via Kubas-interaction. The best storage in Ti3B is owed to a large charge transfer from Ti to B along with the largest distance of Ti empty d-states above the Fermi level, which is a distinct feature of this particular cluster. Furthermore, the effect of substrates on the storage capacity of Ti3B was assessed by calculating the number of adsorbed H-2 on Ti-3 cluster anchored onto B atoms in the B-doped graphene, BC3, and BN substrates. Similar to free-standing Ti3B, Ti-3 anchored onto boron atom in BC3, stores nine di-hydrogen via Kubas interaction, at the same time eliminating the total number of non-useful dissociated hydrogen. Gibbs energy of adsorption as a function of H-2 partial pressure, indicated that at 250 K and 300 K the di-hydrogens on Ti-3@BC3 adsorb and desorb at ambient pressures. Importantly, Ti-3@BC3 avoids the clustering, hence meeting the criteria for efficient and reversible hydrogen storage media. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a new technique to generate multiple light-sheets for fluorescence microscopy. This is possible by illuminating the cylindrical lens using multiple copies of Gaussian beams. A diffraction grating placed just before the cylindrical lens splits the incident Gaussian beam into multiple beams traveling at different angles. Subsequently, this gives rise to diffraction-limited light-sheets after the Gaussian beams pass through the combined cylindrical lens-objective sub-system. Direct measurement of field at and around the focus of objective lens shows multi-sheet pattern with an average thickness of 7.5 mu m and inter-sheet separation of 380 mu m. Employing an independent orthogonal detection sub-system, we successfully imaged fluorescently-coated yeast cells (approximate to 4 mu m) encaged in agarose gel-matrix. Such a diffraction-limited sheet-pattern equipped with dedicated detection system may find immediate applications in the field of optical microscopy and fluorescence imaging. (C) 2015 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on an experimental study of the vertical impact of a concave nosed axisymmetric body on a free surface. Previous studies have shown that bodies with a convex nose, like a sphere, produce a well defined splash with a relatively large cavity behind the model. In contrast, we find that with a concave nose, there is hardly a splash and the cavity extent is greatly reduced. This may be explained by the fact that in the concave nosed case, the initial impact is between a confined air pocket and the free surface unlike in the convex nosed case. From measurements of the unsteady pressure in the concave nose portion, we show that in this case, the maximum pressures are significantly lower than the classically expected ``water hammer'' pressures and also lower than those generally measured on other geometries. Thus, the presence of an air pocket in the case of a concave nosed body adds an interesting dimension to the classical problem of impact of solid bodies on to a free surface. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the transients of buckling in drying colloidal suspensions is pivotal for producing new functional microstructures with tunable morphologies. Here, we report first observations and elucidate the buckling instability induced morphological transition (sphere to ring structure) in an acoustically levitated, heated nanosuspension droplet using dynamic energy balance. Droplet deformation featuring the formation of symmetric cavities is initiated by capillary pressure that is two to three orders of magnitude greater than the acoustic radiation pressure, thus indicating that the standing pressure field has no influence on the buckling front kinetics. With an increase in heat flux, the growth rate of surface cavities and their post-buckled volume increase while the buckling time period reduces, thereby altering the buckling pathway and resulting in distinct precipitate structures. However, irrespective of the heating rate, the volumetric droplet deformation exhibits a linear time dependence and the droplet vaporization is observed to deviate from the classical D-2-law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work sets forth a `hybrid' discretization scheme utilizing bivariate simplex splines as kernels in a polynomial reproducing scheme constructed over a conventional Finite Element Method (FEM)-like domain discretization based on Delaunay triangulation. Careful construction of the simplex spline knotset ensures the success of the polynomial reproduction procedure at all points in the domain of interest, a significant advancement over its precursor, the DMS-FEM. The shape functions in the proposed method inherit the global continuity (Cp-1) and local supports of the simplex splines of degree p. In the proposed scheme, the triangles comprising the domain discretization also serve as background cells for numerical integration which here are near-aligned to the supports of the shape functions (and their intersections), thus considerably ameliorating an oft-cited source of inaccuracy in the numerical integration of mesh-free (MF) schemes. Numerical experiments show the proposed method requires lower order quadrature rules for accurate evaluation of integrals in the Galerkin weak form. Numerical demonstrations of optimal convergence rates for a few test cases are given and the method is also implemented to compute crack-tip fields in a gradient-enhanced elasticity model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Late-transition-metal-doped Pt clusters are prevalent in CO oxidation catalysis, as they exhibit better catalytic activity than pure Pt, while reducing the effective cost and poisoning However, completely eliminating the critical problem of Pt poisoning still poses a big challenge. Here, we report for the first time that, among the bimetallic clusters ((Pt3M where M = Co, Ni, and Cu)/MgO(100)), the CO adsorption site inverts for Pt3Co/MgO(100) from Pt to Co, due to the complete uptake of Pt d-states by lattice oxygen. While this resolves the problem of Pt poisoning, good reaction kinetics are predicted through low barriers for Langmuir-Hinshelwood and Mars van Krevelen (MvK) mechanisms of CO oxidation for Pt3Co/MgO(100) and Li-doped MgO(100), respectively. Li doping in MgO(100) compensates for the charge imbalance caused by a spontaneous oxygen vacancy formation. Pt-3 Co/Li-doped MgO(100) stands out as an exceptional CO oxidation catalyst, giving an MvK reaction barrier as low as 0.11 eV. We thereby propose a novel design strategy of d-band center inversion for CO oxidation catalysts with no Pt poisoning and excellent reaction kinetics.