928 resultados para Differentially Expressed Genes


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It’s crucial to understand the regulatory mechanisms unique to CSCs, so that we may design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue in understanding the regulatory mechanisms of cancer. However, how miRNAs may regulate CSCs is still poorly understood. Here, we present miRNA expression profiling in six populations of prostate cancer (PCa) stem/progenitor cells that possess distinct tumorigenic properties. Six miRNAs were identified to be commonly and differentially expressed, namely, four miRNAs (miR-34a, let-7b, miR-106a and miR-141) were under-expressed, and two miRNAs (miR-301 and miR-452) were over-expressed in the tumorigenic subsets compared to the corresponding marker-negative subpopulations. Among them, the expression patterns of miR-34, let-7b, miR-141 and miR-301 were further confirmed in the CD44+ human primary prostate cancer (HPCa) samples. We then showed that miR-34a functioned as a critical negative regulator in prostate CSCs and PCa development and metastasis. Over-expression of miR-34a in either bulk or CD44+ PCa cells significantly suppressed clonal expansion, tumor development and metastasis. Systemic delivery of miR-34a in tumor-bearing mice demonstrated a potent therapeutic effect again tumor progression and metastasis, leading to extended animal survival. Of great interest, we identified CD44 itself as a direct and relevant downstream target of miR-34a in mediating its tumor-inhibitory effects. Like miR-34a, let-7 manifests similar tumor suppressive effects in PCa cells. In addition, we observed differential mechanisms between let-7 and miR-34a on cell cycle, with miR-34a mainly inducing G1 cell-cycle arrest followed by cell senescence and let-7 inducing G2/M arrest. MiR-301, on the other hand, exerted a cell type dependent effect in regulating prostate CSC properties and PCa development. In summary, our work reveals that the prostate CSC populations display unique miRNA expression signatures and different miRNAs distinctively and coordinately regulate various aspects of CSC properties. Altogether, our results lay a scientific foundation for developing miRNA-based anti-cancer therapy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Uterine leiomyosarcoma (ULMS) is an aggressive malignancy characterized by marked chemoresistance, frequent relapses, and poor outcome. Despite efforts to improve survival over the past several decades, only minimal advances have been made. Hence, there is an urgent and unmet need for better understanding of the molecular deregulations that underlay ULMS and development of more effective therapeutic strategies. This work identified several common deregulations in a large (n=208) tissue microarray of ULMS compared to GI smooth muscle, myometrium, and leiomyoma controls. Our results suggest that significant loss of smooth muscle and gynecological differentiation markers is common in ULMS, a finding that could help render improved ULMS diagnosis, especially for advanced disease. Similarly to reports in other malignancies, we found that several cancer-related proteins were differentially expressed; these could be useful together as biomarkers for ULMS. Notably, we identified significant upregulation and overexpression of the mTOR pathway in ULMS, examined the possible contribution of tyrosine kinase receptor deregulation promoting mTOR activation, and unraveled a role for pS6RP and p4EBP1 as molecular disease prognosticators. The significance of mTOR activation in ULMS and its potential as a therapeutic target were further investigated. Rapamycin abrogated ULMS cell growth and cell cycle progression in vitro but induced only sight growth delay in vivo. Given that effective mTOR therapies likely require combination mTOR blockade with inhibition of other targets, coupled with recent observations suggesting that Aurora A kinase (Aurk A) deregulations commonly occur in ULMS, the preclinical impact of dually targeting both pathways was evaluated. Combined therapy with rapamycin (an mTORC1 inhibitor) and MLN8237 (an investigational Aurk A inhibitor) profoundly and synergistically abrogated ULMS growth in vitro. Interestingly, the superior effects were noted only when MLN8237 was pre-administered. This novel therapeutic combination and scheduling regimen resulted in marked tumor growth inhibition in vivo. Together, these data support further exploration of dual mTOR and Aurk A blockade for the treatment of human ULMS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) tumors are the most common malignant primary brain tumors in adults. The current theory is that these tumors are caused by self-renewing glioblastoma-derived stem cells (GSCs). At the current time, the mechanisms that regulate self-renewal and other oncogenic properties of GSCs remain unknown. Recently, we found transcriptional repressor REST maintains self-renewal in neural stem cells (NSCs) and in GSCs. REST also regulates other oncogenic properties, such as apoptosis, invasion and proliferation. However, the mechanisms by which REST regulates these oncogenic properties are unknown. In an attempt to determine these mechanisms, we performed loss and gain-of-function experiments and genome-wide mRNA expression analysis in GSCs, and we were able to identify REST-regulated genes in GSCs. This was accomplished, after screening concordantly regulated genes in NSCs and GSCs, utilizing two RE1 databases, and setting two-fold expression as filters on the resulting genes. These results received further validation by qRT-PCR. Ingenuity Pathway Analysis (IPA) analysis further revealed the top REST target genes in GSCs were downstream targets of REST and/or involved in other cancers in other cell lines. IPA also revealed that many of the differentially-regulated genes identified in this study are involved in oncogenic properties seen in GBM, and which we believe are related to REST expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is well accepted that tumorigenesis is a multi-step procedure involving aberrant functioning of genes regulating cell proliferation, differentiation, apoptosis, genome stability, angiogenesis and motility. To obtain a full understanding of tumorigenesis, it is necessary to collect information on all aspects of cell activity. Recent advances in high throughput technologies allow biologists to generate massive amounts of data, more than might have been imagined decades ago. These advances have made it possible to launch comprehensive projects such as (TCGA) and (ICGC) which systematically characterize the molecular fingerprints of cancer cells using gene expression, methylation, copy number, microRNA and SNP microarrays as well as next generation sequencing assays interrogating somatic mutation, insertion, deletion, translocation and structural rearrangements. Given the massive amount of data, a major challenge is to integrate information from multiple sources and formulate testable hypotheses. This thesis focuses on developing methodologies for integrative analyses of genomic assays profiled on the same set of samples. We have developed several novel methods for integrative biomarker identification and cancer classification. We introduce a regression-based approach to identify biomarkers predictive to therapy response or survival by integrating multiple assays including gene expression, methylation and copy number data through penalized regression. To identify key cancer-specific genes accounting for multiple mechanisms of regulation, we have developed the integIRTy software that provides robust and reliable inferences about gene alteration by automatically adjusting for sample heterogeneity as well as technical artifacts using Item Response Theory. To cope with the increasing need for accurate cancer diagnosis and individualized therapy, we have developed a robust and powerful algorithm called SIBER to systematically identify bimodally expressed genes using next generation RNAseq data. We have shown that prediction models built from these bimodal genes have the same accuracy as models built from all genes. Further, prediction models with dichotomized gene expression measurements based on their bimodal shapes still perform well. The effectiveness of outcome prediction using discretized signals paves the road for more accurate and interpretable cancer classification by integrating signals from multiple sources.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

YKL-40 is a secreted glycoprotein that has been reported to be expressed in pathologic conditions of extracellular matrix degradation and angiogenesis, such as rheumatoid arthritis, severe osteoarthritis, primary colorectal cancer, metastatic breast cancer, and recurrent ovarian cancer (Dehn, Hogdall et al. 2003). ^ We have identified YKL-40 as a serum marker for glioblastoma multiforme (GBM) using microarray analysis from samples of GBM. We compared the gene expression profile of 19 gliomas to pooled normal brain tissue using the Incyte 10,000 gene expression array. The most differentially expressed gene in this analysis was YKL-40; it was detected in GBM samples with a range of 3 to 62-fold elevation over normal brain. Western blot analysis of glioma samples for YKL-40 protein levels revealed substantial elevation in approximately 65% of GBMs, and undetectable levels in lower-grade gliomas and normal brain tissue. ELISA analysis on serum samples of glioma patients showed that YKL-40 levels were substantially elevated in many of the GBM patients. Statistical analysis indicated that in patients with glioma, serum YKL-40 levels correlate with tumor grade and potentially tumor burden in GBM. ^ Furthermore, we found that YKL-40 expression by in-situ hybridization on a brain tumor tissue array was limited to GBM's and gliosarcomas (GSA), and that YKL-40 expression was specific to the GBM component of GSA. Additional in-situ hybridization analysis, found it to be regionally associated with tumor vasculature as well as activated AKT expression in both human and mouse GBM's. Correlation of elevated YKL-40 with phospho-AKT was confirmed by Western blot analysis on a series of glioblastoma tumors, and inhibition of PI3 Kinase signaling by addition of LY294002 also decreased secretion of YKL-40 over a 7-day period in U87 glioblastoma cell tine. Lastly, YKL-40 expression was induced in response to serum starvation and altered by interaction with specific extracellular matrix (ECM) modules. In summary, we have identified the first accurate serum marker for high-grade gliomas. Furthermore, our findings indicate that YKL-40 is a highly expressed vascular-related glycoprotein in human GBM tissue and that it is affected by the AKT signaling pathway and interaction with components of brain ECM proteins. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The GTPase dynamin I and the inositol 5-phosphatase synaptojanin are nerve terminal proteins implicated in synaptic vesicle recycling. Both proteins contain COOH-terminal proline-rich domains that can interact with a variety of Src homology 3 (SH3) domains. A major physiological binding partner for dynamin I and synaptojanin in the nervous system is amphiphysin I, an SH3 domain-containing protein also concentrated in nerve terminals. We have used the proline-rich tail of synaptojanin to screen a rat brain library by the two-hybrid method to identify additional interacting partners of synaptojanin. Three related proteins containing SH3 domains that are closely related to the SH3 domains of Grb2 were isolated: SH3p4, SH3p8, and SH3p13. Further biochemical studies demonstrated that the SH3p4/8/13 proteins bind to both synaptojanin and dynamin I. The SH3p4/8/13 transcripts are differentially expressed in tissues: SH3p4 mRNA was detected only in brain, SH3p13 mRNA was present in brain and testis, and the SH3p8 transcript was detected at similar levels in multiple tissues. Members of the SH3p4/8/13 protein family were found to be concentrated in nerve terminals, and pools of synaptojanin and dynamin I were coprecipitated from brain extracts with antibodies recognizing SH3p4/8/13. These findings underscore the important role of SH3-mediated interactions in synaptic vesicle recycling.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To examine the role of intercellular interaction on cell differentiation and gene expression in human prostate, we separated the two major epithelial cell populations and studied them in isolation and in combination with stromal cells. The epithelial cells were separated by flow cytometry using antibodies against differentially expressed cell-surface markers CD44 and CD57. Basal epithelial cells express CD44, and luminal epithelial cells express CD57. The CD57+ luminal cells are the terminally differentiated secretory cells of the gland that synthesize prostate-specific antigen (PSA). Expression of PSA is regulated by androgen, and PSA mRNA is one of the abundant messages in these cells. We show that PSA expression by the CD57+ cells is abolished after prostate tissue is dispersed by collagenase into single cells. Expression is restored when CD57+ cells are reconstituted with stromal cells. The CD44+ basal cells possess characteristics of stem cells and are the candidate progenitors of luminal cells. Differentiation, as reflected by PSA production, can be detected when CD44+ cells are cocultured with stromal cells. Our studies show that cell–cell interaction plays an important role in prostatic cytodifferentiation and the maintenance of the differentiated state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mediator proteins are required for transcriptional regulation of most genes in yeast. Mammalian Mediator homologs also function as transcriptional coactivators in vitro; however, their physiological role in gene-specific transcription is not yet known. To determine the role of Mediator proteins in the development of complex organisms, we purified putative Mediator complexes from Caenorhabditis elegans and analyzed their phenotypes in vivo. C. elegans Mediator homologs were assembled into two multiprotein complexes. RNA interference assays showed that the CeMed6, CeMed7, and CeMed10/CeNut2 gene products are required for the expression of developmentally regulated genes, but are dispensable for expression of the ubiquitously expressed genes tested in this study. Therefore, the gene-specific function of Mediator as an integrator of transcriptional regulatory signals is evolutionarily conserved and is essential for C. elegans development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tissue factor (TF) is the cellular receptor for an activated form of clotting factor VII (VIIa) and the binding of factor VII(a) to TF initiates the coagulation cascade. Sequence and structural patterns extracted from a global alignment of TF confers homology with interferon receptors of the cytokine receptor super family. Several recent studies suggested that TF could function as a genuine signal transducing receptor. However, it is unknown which biological function(s) of cells are altered upon the ligand, VIIa, binding to TF. In the present study, we examined the effect of VIIa binding to cell surface TF on cellular gene expression in fibroblasts. Differential mRNA display PCR technique was used to identify transcriptional changes in fibroblasts upon VIIa binding to TF. The display showed that VIIa binding to TF either up or down-regulated several mRNA species. The differential expression of one such transcript, VIIa-induced up-regulation, was confirmed by Northern blot analysis. Isolation of a full-length cDNA corresponding to the differentially expressed transcript revealed that VIIa-up-regulated gene was poly(A) polymerase. Northern blot analysis of various carcinomas and normal human tissues revealed an over expression of PAP in cancer tissues. Enhanced expression of PAP upon VIIa binding to tumor cell TF may potentially play an important role in tumor metastasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe the molecular cloning and characterization of the unc-64 locus of Caenorhabditis elegans. unc-64 expresses three transcripts, each encoding a molecule with 63–64% identity to human syntaxin 1A, a membrane- anchored protein involved in synaptic vesicle fusion. Interestingly, the alternative forms of syntaxin differ only in their C-terminal hydrophobic membrane anchors. The forms are differentially expressed in neuronal and secretory tissues; genetic evidence suggests that these forms are not functionally equivalent. A complete loss-of-function mutation in unc-64 results in a worm that completes embryogenesis, but arrests development shortly thereafter as a paralyzed L1 larva, presumably as a consequence of neuronal dysfunction. The severity of the neuronal phenotypes of C. elegans syntaxin mutants appears comparable to those of Drosophila syntaxin mutants. However, nematode syntaxin appears not to be required for embryonic development, for secretion of cuticle from the hypodermis, or for the function of muscle, in contrast to Drosophila syntaxin, which appears to be required in all cells. Less severe viable unc-64 mutants exhibit a variety of behavioral defects and show strong resistance to the acetylcholinesterase inhibitor aldicarb. Extracellular physiological recordings from pharyngeal muscle of hypomorphic mutants show alterations in the kinetics of transmitter release. The lesions in the hypomorphic alleles map to the hydrophobic face of the H3 coiled-coil domain of syntaxin, a domain that in vitro mediates physical interactions with similar coiled-coil domains in SNAP-25 and synaptobrevin. Furthermore, the unc-64 syntaxin mutants exhibit allele-specific genetic interactions with mutants carrying lesions in the coiled-coil domain of synaptobrevin, providing in vivo evidence for the significance of these domains in regulating synaptic vesicle fusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a technique called the generation of longer cDNA fragments from serial analysis of gene expression (SAGE) tags for gene identification (GLGI), to convert SAGE tags of 10 bases into their corresponding 3′ cDNA fragments covering hundred bases. A primer containing the 10-base SAGE tag is used as the sense primer, and a single base anchored oligo(dT) primer is used as an antisense primer in PCR, together with Pfu DNA polymerase. By using this approach, a cDNA fragment extending from the SAGE tag toward the 3′ end of the corresponding sequence can be generated. Application of the GLGI technique can solve two critical issues in applying the SAGE technique: one is that a longer fragment corresponding to a SAGE tag, which has no match in databases, can be generated for further studies; the other is that the specific fragment corresponding to a SAGE tag can be identified from multiple sequences that match the same SAGE tag. The development of the GLGI method provides several potential applications. First, it provides a strategy for even wider application of the SAGE technique for quantitative analysis of global gene expression. Second, a combined application of SAGE/GLGI can be used to complete the catalogue of the expressed genes in human and in other eukaryotic species. Third, it can be used to identify the 3′ cDNA sequence from any exon within a gene. It can also be used to confirm the reality of exons predicted by bioinformatic tools in genomic sequences. Fourth, a combined application of SAGE/GLGI can be applied to define the 3′ boundary of expressed genes in the genomic sequences in human and in other eukaryotic genomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the goldfish (Carassius auratus) the two endogenous forms of gonadotropin-releasing hormone (GnRH), namely chicken GnRH II ([His5,Trp7,Tyr8]GnRH) and salmon GnRH ([Trp7,Leu8]GnRH), stimulate the release of both gonadotropins and growth hormone from the pituitary. This control is thought to occur by means of the stimulation of distinct GnRH receptors. These receptors can be distinguished on the basis of differential gonadotropin and growth hormone releasing activities of naturally occurring GnRHs and GnRHs with variant amino acids in position 8. We have cloned the cDNAs of two GnRH receptors, GfA and GfB, from goldfish brain and pituitary. Although the receptors share 71% identity, there are marked differences in their ligand selectivity. Both receptors are expressed in the pituitary but are differentially expressed in the brain, ovary, and liver. Thus we have found and cloned two full-length cDNAs that appear to correspond to different forms of GnRH receptor, with distinct pharmacological characteristics and tissue distribution, in a single species.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present statistical methods for analyzing replicated cDNA microarray expression data and report the results of a controlled experiment. The study was conducted to investigate inherent variability in gene expression data and the extent to which replication in an experiment produces more consistent and reliable findings. We introduce a statistical model to describe the probability that mRNA is contained in the target sample tissue, converted to probe, and ultimately detected on the slide. We also introduce a method to analyze the combined data from all replicates. Of the 288 genes considered in this controlled experiment, 32 would be expected to produce strong hybridization signals because of the known presence of repetitive sequences within them. Results based on individual replicates, however, show that there are 55, 36, and 58 highly expressed genes in replicates 1, 2, and 3, respectively. On the other hand, an analysis by using the combined data from all 3 replicates reveals that only 2 of the 288 genes are incorrectly classified as expressed. Our experiment shows that any single microarray output is subject to substantial variability. By pooling data from replicates, we can provide a more reliable analysis of gene expression data. Therefore, we conclude that designing experiments with replications will greatly reduce misclassification rates. We recommend that at least three replicates be used in designing experiments by using cDNA microarrays, particularly when gene expression data from single specimens are being analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) catalyze the removal of acetyl groups on the amino-terminal lysine residues of core nucleosomal histones. This activity is associated generally with transcriptional repression. We have reported previously that inhibition of HDAC activity by hydroxamic acid-based hybrid polar compounds, such as suberoylanilide hydroxamic acid (SAHA), induces differentiation and/or apoptosis of transformed cells in vitro and inhibits tumor growth in vivo. SAHA is a potentially new therapeutic approach to cancer treatment and is in Phase I clinical trials. In several tumor cell lines examined, HDAC inhibitors alter the expression of less than 1% of expressed genes, including the cell cycle kinase inhibitor p21WAF1. In T24 bladder carcinoma cells, SAHA induces up to a 9-fold increase in p21WAF1 mRNA and protein, which is, at least in part, because of an increase in the rate of transcription of the gene. SAHA causes an accumulation of acetylated histones H3 and H4 in total cellular chromatin by 2 h, which is maintained through 24 h of culture. An increase in the accumulation of acetylated H3 and H4 was detected throughout the p21WAF1 promoter and the structural gene after culture with SAHA. The level of histone acetylation did not change in chromatin associated with the actin and p27 genes, and their mRNA expression was not altered during culture of T24 cells with SAHA. Thus, the present findings indicate that the induction of p21WAF1 by SAHA is regulated, at least in part, by the degree of acetylation of the gene-associated histones and that this induced increase in acetylation is gene selective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gephyrin is essential for both the postsynaptic localization of inhibitory neurotransmitter receptors in the central nervous system and the biosynthesis of the molybdenum cofactor (Moco) in different peripheral organs. Several alternatively spliced gephyrin transcripts have been identified in rat brain that differ in their 5′ coding regions. Here, we describe gephyrin splice variants that are differentially expressed in non-neuronal tissues and different regions of the adult mouse brain. Analysis of the murine gephyrin gene indicates a highly mosaic organization, with eight of its 29 exons corresponding to the alternatively spliced regions identified by cDNA sequencing. The N- and C-terminal domains of gephyrin encoded by exons 3–7 and 16–29, respectively, display sequence similarities to bacterial, invertebrate, and plant proteins involved in Moco biosynthesis, whereas the central exons 8, 13, and 14 encode motifs that may mediate oligomerization and tubulin binding. Our data are consistent with gephyrin having evolved from a Moco biosynthetic protein by insertion of protein interaction sequences.