967 resultados para Difference test
Resumo:
El presente trabajo se llevó a cabo entre los meses de Julio a Septiembre del año 1965, en los Laboratorios de la Escuela Nacional de Agricultura y Ganadería. Se recurrió a la prueba del Ring-Test, para diagnosticar la Brucelosis en hatos situados en los departamentos de Managua, León, Carazo, Masaya, Granada, Rivas y Boaco; se obtuvieron ciertos datos estadísticos al objeto de hacer un estudio de productividad de leche. Los resultados de este trabajo fueron: 1). Las fincas positivas se encuentran localizadas en los departamentos de Managua, Carazo, Granada y Rivas. 2). Los porcentajes de hatos Negativos, positivos y sospechosos por departamento fueron los siguientes: % de hatos N., Managua 80,76. % de hatos P. 9.62, % de hatos S. 3.91, Leon % de hatos N. 100.00, % de hatos P. 9.62, % de hatos S. 0, Granada % de hatos N. 86.66, % de Hatos P. 0, % de hatos S. 0, Rivas % de hatos N. 46.15, % de hatos P. 53.85, % de hatos S. 0. No se hace mención de los porcentajes de los departamentos de Masaya, Carazo y Boaco, debido a los pocos hatos examinados en ellos. 3). El porcentaje de vacas en producción del total de vacas adultas es de 54.10% en la cuenca lechera y la zona del pacifico y el 54% en los hatos examinados. 4). La cantidad de leche para la venta es de 3.22 litros por vaca.
Resumo:
El presente estudio se realizó con el objetivo de proporcionar una nueva herramienta de diagnóstico de mastitis subclínica bovina a nivel de campoy reducir las pérdidas económicas ocasionadas por la mastitis subclínica a los productores mediante el diagnóstico temprano, esto se pretende lograr mediante la comparación de dos métodos de diagnóstico como son California Mastitis Test y Detector de mastitis subclínica DRAMINSKI 4Q, el estudio se realizó en la finca “Santana” ubicada en el municipio de Diriamba, departamento de Carazo, ubicada en las coordenadas 11°49´59.9” latitud norte y de 86°14´21.1”longitud oeste con una altura aproximada a 580msnm, fueron utilizados 19 hembras las cuales estaban entre dos y tres lactancias, fueron muestreadas por cinco semanas consecutivas en el segundo ordeño, se utilizaron ambos métodos de diagnóstico iniciando por el DRAMINSKI debido a las indicaciones del equipo, se deben utilizar los primeros chorros de leche para obtener mejores resultados, posteriormente se utilizó la prueba california en las mismas vacas, de los cuartos que dieron positivo a uno o ambos métodos de diagnóstico se procedió a tomar la muestra de leche para llevarlo al laboratorio y de esta forma verificar el resultado mediante aislamiento e identificación bacteriana. Los datos fueron analizados mediante la realización de bases de datos Excel y mediante la utilización de la prueba de dependencia para CHI-CUADRADO, en los resultados se obtuvo que no hubo dependencia entre los métodos diagnósticos, pero las diferencias obtenidas no fueron significativas entre uno y otro. En el porcentaje de efectividad en los diagnósticos, para los resultados de DRAMINSKI se obtuvo un 97.38 % de efectividad en el diagnóstico correcto y un 2.62 % de diagnósticos incorrectos versus un 96.11 % de diagnósticos correctos y un 3.89 % de diagnósticos incorrectos que obtuvo la prueba California, los microorganismos aislados causantes de mastitis fueron Staphylococos aureus y Pseudomona aeruginosa.
Resumo:
A high order accurate finite difference method for direct numerical simulation of coherent structure in the mixing layers is presented. The reason for oscillation production in numerical solutions is analyzed, It is caused by a nonuniform group velocity of wavepackets. A method of group velocity control for the improvement of the shock resolution is presented. In numerical simulation the fifth-order accurate upwind compact difference relation is used to approximate the derivatives in the convection terms of the compressible N-S equations, a sixth-order accurate symmetric compact difference relation is used to approximate the viscous terms, and a three-stage R-K method is used to advance in time. In order to improve the shock resolution the scheme is reconstructed with the method of diffusion analogy which is used to control the group velocity of wavepackets. (C) 1997 Academic Press.
Resumo:
A new compact finite difference-Fourier spectral hybrid method for solving the three dimensional incompressible Navier-Stokes equations is developed in the present paper. The fifth-order upwind compact finite difference schemes for the nonlinear convection terms in the physical space, and the sixth-order center compact schemes for the derivatives in spectral space are described, respectively. The fourth-order compact schemes in a single nine-point cell for solving the Helmholtz equations satisfied by the velocities and pressure in spectral space is derived and its preconditioned conjugate gradient iteration method is studied. The treatment of pressure boundary conditions and the three dimensional non-reflecting outflow boundary conditions are presented. Application to the vortex dislocation evolution in a three dimensional wake is also reported.
Resumo:
The generalized Shmuely Difference Algorithm (GSDA) is presented here to analyze the dynamic fracture performance of orthogonal-anisotropic composite materials, such as glass fibre reinforced phenolplast. The difference recurrence Formulae and boundary condition difference extrapolation formulae are derived and programmed. The dynamic stress intensity factors (DSIF) of the isotropic and anisotropic centrally cracked plates are computed respectively using GSDA and compared with that published previously. GSDA is proved effective and reliable. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
Resumo:
We present a direct and dynamical method to distinguish low-dimensional deterministic chaos from noise. We define a series of time-dependent curves which are closely related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to the time-dependent curves, while for a white noise or a noise with the same power spectrum as that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic time series, the envelope is eventually destroyed with the increasing of the amplitude of the noise.
Resumo:
A perturbational h4 compact exponential finite difference scheme with diagonally dominant coefficient matrix and upwind effect is developed for the convective diffusion equation. Perturbations of second order are exerted on the convective coefficients and source term of an h2 exponential finite difference scheme proposed in this paper based on a transformation to eliminate the upwind effect of the convective diffusion equation. Four numerical examples including one- to three-dimensional model equations of fluid flow and a problem of natural convective heat transfer are given to illustrate the excellent behavior of the present exponential schemes, the h4 accuracy of the perturbational scheme is verified using double precision arithmetic.
Resumo:
Perturbations are applied to the convective coefficients and source term of a convection-diffusion equation so that second-order corrections may be applied to a second-order exponential scheme. The basic Structure of the equations in the resulting fourth-order scheme is identical to that for the second order. Furthermore, the calculations are quite simple as the second-order corrections may be obtained in a single pass using a second-order scheme. For one to three dimensions, the fourth-order exponential scheme is unconditionally stable. As examples, the method is applied to Burgers' and other fluid mechanics problems. Compared with schemes normally used, the accuracies are found to be good and the method is applicable to regions with large gradients.