946 resultados para Designer receptors
Resumo:
Collagens are important platelet activators in the vascular subendothelium and vessel wall. Since the regulation of platelet activation is a key step in distinguishing normal haemostasis from pathological thrombosis, collagen interactions with platelets are important targets for pharmacological control. Platelets have two major receptors for collagens, the integrin alpha2beta1, with a major role in adhesion and platelet anchoring and the Ig superfamily member, GPVI, principally responsible for signalling and platelet activation. In addition, GPIb-V-IX, can be considered as an indirect collagen receptor acting via von Willebrand factor as bridging molecule and is essential for platelet interactions with collagen at high shear rates. There is some evidence for additional receptors, which may regulate the response to individual collagen types. This review discusses how these receptors work separately with specific agonists and proposes possible mechanisms for how they work together to regulate platelet activation by collagen, which remains controversial and poorly understood.
Resumo:
Platelets are known to contain platelet factor 4 and beta-thromboglobulin, alpha-chemokines containing the CXC motif, but recent studies extended the range to the beta-family characterized by the CC motif, including RANTES and Gro-alpha. There is also evidence for expression of chemokine receptors CCR4 and CXCR4 in platelets. This study shows that platelets have functional CCR1, CCR3, CCR4, and CXCR4 chemokine receptors. Polymerase chain reaction detected chemokine receptor messenger RNA in platelet RNA. CCR1, CCR3, and especially CCR4 gave strong signals; CXCR1 and CXCR4 were weakly positive. Flow cytometry with specific antibodies showed the presence of a clear signal for CXCR4 and weak signals for CCR1 and CCR3, whereas CXCR1, CXCR2, CXCR3, and CCR5 were all negative. Immunoprecipitation and Western blotting with polyclonal antibodies to cytoplasmic peptides clearly showed the presence of CCR1 and CCR4 in platelets in amounts comparable to monocytes and CCR4 transfected cells, respectively. Chemokines specific for these receptors, including monocyte chemotactic protein 1, macrophage inflammatory peptide 1alpha, eotaxin, RANTES, TARC, macrophage-derived chemokine, and stromal cell-derived factor 1, activate platelets to give Ca(++) signals, aggregation, and release of granule contents. Platelet aggregation was dependent on release of adenosine diphosphate (ADP) and its interaction with platelet ADP receptors. Part, but not all, of the Ca(++) signal was due to ADP release feeding back to its receptors. Platelet activation also involved heparan or chondroitin sulfate associated with the platelet surface and was inhibited by cleavage of these glycosaminoglycans or by heparin or low molecular weight heparin. These platelet receptors may be involved in inflammatory or allergic responses or in platelet activation in human immunodeficiency virus infection.
Resumo:
We have cloned the platelet collagen receptor glycoprotein (GP) VI from a human bone marrow cDNA library using rapid amplification of cDNA ends with platelet mRNA to complete the 5' end sequence. GPVI was isolated from platelets using affinity chromatography on the snake C-type lectin, convulxin, as a critical step. Internal peptide sequences were obtained, and degenerate primers were designed to amplify a fragment of the GPVI cDNA, which was then used as a probe to screen the library. Purified GPVI, as well as Fab fragments of polyclonal antibodies made against the receptor, inhibited collagen-induced platelet aggregation. The GPVI receptor cDNA has an open reading frame of 1017 base pairs coding for a protein of 339 amino acids including a putative 23-amino acid signal sequence and a 19-amino acid transmembrane domain between residues 247 and 265. GPVI belongs to the immunoglobulin superfamily, and its sequence is closely related to FcalphaR and to the natural killer receptors. Its extracellular chain has two Ig-C2-like domains formed by disulfide bridges. An arginine residue is found in position 3 of the transmembrane portion, which should permit association with Fcgamma and its immunoreceptor tyrosine-based activation motif via a salt bridge. With 51 amino acids, the cytoplasmic tail is relatively long and shows little homology to the C-terminal part of the other family members. The ability of the cloned GPVI cDNA to code for a functional platelet collagen receptor was demonstrated in the megakaryocytic cell line Dami. Dami cells transfected with GPVI cDNA mobilized intracellular Ca(2+) in response to collagen, unlike the nontransfected or mock transfected Dami cells, which do not respond to collagen.
Resumo:
Collagen is a major component of extracellular matrix and a wide variety of types exist. Cells recognise collagen in different ways depending on sequence and structure. They can recognise predominantly primary sequence, they may require triple-helical structure or they can require fibrillar structures. Since collagens are major constituents of the subendothelium that determine the thrombogenicity of the injured or pathological vessel wall, a major role is induction of platelet activation and aggregation as the start of repair processes. Platelets have at least two direct and one indirect (via von Willebrand factor) receptors for collagen, and collagen has specific recognition motifs for these receptors. These receptors and recognition motifs are under intensive investigation in the search for possible methods to control platelet activation in vivo. A wide range of proteins has been identified and, in part, characterised from both haematophageous insects and invertebrates but also from snake venoms that inhibit platelet activation by collagen or induce platelet activation via collagen receptors on platelets. These will provide model systems to test the effect of inhibition of specific collagen-platelet receptor interactions for both effectiveness as well as for side effects and should provide assay systems for the development of small molecule inhibitors. Since platelet inhibitors for long-term prophylaxis of cardiovascular diseases are still in clinical trials there are many unanswered questions about long-term effects both positive and negative. The major problem which still has to be definitively solved about these alternative approaches to inhibition of platelet activation is whether they will show advantages in terms of dose-response curves while offering decreased risks of bleeding problems. Preliminary studies would seem to suggest that this is indeed the case.
Resumo:
Eph receptor tyrosine kinases and their cell-surface-bound ligands, the ephrins, regulate axon guidance and bundling in the developing brain, control cell migration and adhesion, and help patterning the embryo. Here we report that two ephrinB ligands and three EphB receptors are expressed in and regulate the formation of the vascular network. Mice lacking ephrinB2 and a proportion of double mutants deficient in EphB2 and EphB3 receptor signaling die in utero before embryonic day 11.5 (E11.5) because of defects in the remodeling of the embryonic vascular system. Our phenotypic analysis suggests complex interactions and multiple functions of Eph receptors and ephrins in the embryonic vasculature. Interaction between ephrinB2 on arteries and its EphB receptors on veins suggests a role in defining boundaries between arterial and venous domains. Expression of ephrinB1 by arterial and venous endothelial cells and EphB3 by veins and some arteries indicates that endothelial cell-to-cell interactions between ephrins and Eph receptors are not restricted to the border between arteries and veins. Furthermore, expression of ephrinB2 and EphB2 in mesenchyme adjacent to vessels and vascular defects in ephB2/ephB3 double mutants indicate a requirement for ephrin-Eph signaling between endothelial cells and surrounding mesenchymal cells. Finally, ephrinB ligands induce capillary sprouting in vitro with a similar efficiency as angiopoietin-1 (Ang1) and vascular endothelial growth factor (VEGF), demonstrating a stimulatory role of ephrins in the remodeling of the developing vascular system.
Resumo:
Benzodiazepines are widely used drugs exerting sedative, anxiolytic, muscle relaxant, and anticonvulsant effects by acting through specific high affinity binding sites on some GABA(A) receptors. It is important to understand how these ligands are positioned in this binding site. We are especially interested here in the conformation of loop A of the alpha(1)beta(2)gamma(2) GABA(A) receptor containing a key residue for the interaction of benzodiazepines: alpha(1)H101. We describe a direct interaction of alpha(1)N102 with a diazepam- and an imidazobenzodiazepine-derivative. Our observations help to better understand the conformation of this region of the benzodiazepine pocket in GABA(A) receptor.
Resumo:
Benzodiazepines are widely used drugs. They exert sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsant effects and act through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid type A (GABA(A)) receptor. Ligands of the benzodiazepine-binding site are classified into three groups depending on their mode of action: positive and negative allosteric modulators and antagonists. To rationally design ligands of the benzodiazepine site in different isoforms of the GABA(A) receptor, we need to understand the relative positioning and overlap of modulators of different allosteric properties. To solve these questions, we used a proximity-accelerated irreversible chemical coupling reaction. GABA(A) receptor residues thought to reside in the benzodiazepine-binding site were individually mutated to cysteine and combined with a cysteine-reactive benzodiazepine site ligand. Direct apposition of reaction partners is expected to lead to a covalent reaction. We describe here such a reaction of predominantly alpha(1)H101C and also three other mutants (alpha(1)G157C, alpha(1)V202C, and alpha(1)V211C) with an Imid-NCS derivative in which a reactive isothiocyanate group (-NCS) replaces the azide group (-N(3)) in the partial negative allosteric modulator Ro15-4513. Our results show four contact points of imidazobenzodiazepines with the receptor, alpha(1)H101C being shared by classical benzodiazepines. Taken together with previous data, a similar orientation of these ligands within the benzodiazepine-binding pocket may be proposed.
Resumo:
Zolpidem is a positive allosteric modulator of GABA(A) receptors with sensitivity to subunit composition. While it acts with high affinity and efficacy at GABA(A) receptors containing the alpha(1) subunit, it has a lower affinity to GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits and has a very weak efficacy at receptors containing the alpha(5) subunit. Here, we show that replacing histidine in position 105 in the alpha(5) subunit by cysteine strongly stimulates the effect of zolpidem in receptors containing the alpha(5) subunit. The side chain volume of the amino acid residue in this position does not correlate with the modulation by zolpidem. Interestingly, serine is not able to promote the potentiation by zolpidem. The homologous residues to alpha(5)H105 in alpha(1), alpha(2), and alpha(3) are well-known determinants of the action of classical benzodiazepines. Other studies have shown that replacement of these histidines alpha(1)H101, alpha(2)H101, and alpha(3)H126 by arginine, as naturally present in alpha(4) and alpha(6), leads to benzodiazepine insensitivity of these receptors. Thus, the nature of the amino acid residue in this position is not only crucial for the action of classical benzodiazepines but in alpha(5) containing receptors also for the action of zolpidem.
Resumo:
Acetylcholine interacts with muscarinic receptors (M) to mediate gastrointestinal (GI) smooth muscle contractions. We have compared mRNA levels and binding sites of M(1)to M(5) in muscle tissues from fundus abomasi, pylorus, ileum, cecum, proximal loop of the ascending colon (PLAC), and external loop of the spiral colon (ELSC) of healthy dairy cows. The mRNA levels were measured by quantitative RT-PCR. The inhibition of [(3)H]-QNB (1-quinuclidinyl-[phenyl-4-(3)H]-benzilate) binding by M antagonists [atropine (M(1 - 5)), pirenzepine (M(1)), methoctramine (M(2)), 4-DAMP (M(3)), and tropicamide (M(4))] was used to identify receptors at the functional level. Maximal binding (B(max)) was determined through saturation binding with atropine as a competitor. The mRNA levels of M(1), M(2), M(3), and M(5) represented 0.2, 48, 50, and 1.8%, respectively, of the total M population, whereas mRNA of M(4) was undetectable. The mRNA levels of M(2) and of M(3) in the ileum were lower (P < 0.05) than in other GI locations, which were similar among each other. Atropine, pirenzepine, methoctramine, and 4-DAMP inhibited [(3)H]-QNB binding according to an either low- or high-affinity receptor pattern, whereas tropicamide had no effect on [(3)H]-QNB binding. The [(3)H]-QNB binding was dose-dependent and saturable. B(max) in fundus, pylorus, and PLAC was lower (P < 0.05) than in the ELSC, and in the pylorus lower (P < 0.05) than in the ileum. B(max) and mRNA levels were negatively correlated (r = -0.3; P < 0.05). In conclusion, densities of M are different among GI locations, suggesting variable importance of M for digestive functions along the GI tract.
Resumo:
Hepatic nuclear receptors (NR), particularly constitutive androstane receptor (CAR) and pregnane X receptor (PXR), are involved in the coordinated transcriptional control of genes that encode proteins involved in the metabolism and detoxification of xeno- and endobiotics. A broad spectrum of metabolic processes are mediated by NR acting in concert with ligands such as glucocorticoids. This study examined the role of dexamethasone on hepatic mRNA expression of CAR, PXR and several NR target genes. Twenty-eight male calves were allotted to one of four treatment groups in a 2 x 2 arrangement of treatments: feed source (colostrum or milk-based formula) and glucocorticoid administration (twice daily intramuscular dexamethasone). Liver biopsies were obtained at 5 days of age. Real-time reverse transcription polymerase chain reaction was used to quantify mRNA abundances. No effects of feed source on mRNA abundances were observed. For the NR examined, mRNA abundance of both CAR and PXR in dexamethasone-treated calves was lower (p < 0.05) by 39% and 40%, respectively, than in control calves. Abundance of NR target genes exhibited a mixed response. SULT1A1 mRNA abundance was 39% higher (p < 0.05) in dexamethasone-treated calves compared with control calves. mRNA abundance of CYP2C8 tended also to be higher (+44%; p = 0.053) after dexamethasone treatment. No significant treatment effects (p > 0.10) were observed for mRNA abundances of CYP3A4, CYP2E1, SULT2A1, UGT1A1 or cytochrome P450 reductase (CPR). In conclusion, an enhanced glucocorticoid status, induced by pharmacological amounts of dexamethasone, had differential and in part unexpected effects on NR and NR target systems in 5-day-old calves. Part of the unexpected responses may be due the immaturity of NR and NR receptor target systems.
Resumo:
BACKGROUND: Peptide receptors, overexpressed in specific cancers, represent new diagnostic and therapeutic targets. In this study, receptors for the gastrin-releasing peptide (GRP), and other members of the bombesin-family of peptides, were evaluated in ovarian neoplasms. METHODS: 75 primary, secondary and metastatic ovarian tumors were investigated for their bombesin-receptor subtype expression, incidence, localization and density using in vitro autoradiography on tissue sections with the universal radioligand (125)I-[D-Tyr(6), beta-Ala(11), Phe(13), Nle(14)]-bombesin(6-14) and the GRP-receptor subtype-preferring (125)I-[Tyr(4)]-bombesin. RESULTS: GRP-receptors were detected in 42/61 primary ovarian tumors; other bombesin-receptor subtypes (BB1, bb3) were rarely present (3/61). Two different tissue compartments expressed GRP-receptors: the tumoral vasculature was the predominant site of GRP-receptor expression (38/61), whereas neoplastic cells more rarely expressed GRP-receptors (14/61). GRP-receptor positive vessels were present in the various classes of ovarian tumors; generally, malignant tumors had a higher incidence of GRP-receptor positive vessels compared to their benign counterparts. The prevalence of such vessels was particularly high in ovarian carcinomas (16/19) and their metastases (5/5). The GRP-receptors were expressed in high density in the muscular vessel wall. Normal ovary (n=10) lacked GRP-receptors. CONCLUSIONS: The large amounts of GRP-receptors in ovarian tumor vessels suggest a role in tumoral vasculature and possibly angiogenesis. Further, these vessels might be targeted in vivo with bombesin analogs for diagnosis or for therapy.
Resumo:
Many peptide hormone receptors are over-expressed in human cancer, permitting an in vivo targeting of tumors for diagnostic and therapeutic purposes. NPY receptors are novel and promising candidates in this field. Using in vitro receptor autoradiography, Y1 and Y2 receptors have been found to be expressed in breast carcinomas, adrenal gland and related tumors, renal cell carcinomas, and ovarian cancers in both tumor cells and tumor-associated blood vessels. Pathophysiologically, tumoral NPY receptors may be activated by endogenous NPY released from intratumoral nerve fibers or tumor cells themselves, and mediate NPY effects on tumor cell proliferation and tumoral blood supply. Clinically, tumoral NPY receptors may be targeted with NPY analogs coupled with adequate radionuclides or cytotoxic agents for a scintigraphic tumor imaging and/or tumor therapy.
Resumo:
Gut hormone receptors can be over-expressed in several human cancers and represent the basis for receptor-targeted tumor imaging and therapy. A promising receptor for such clinical applications is the cholecystokinin receptor. Cholecystokinin receptors are expressed in numerous neuroendocrine tumors, in particular medullary thyroid carcinomas and neuroendocrine gut tumors, as well as in stromal tumors. Moreover, several radiolabeled CCK or gastrin analogs have been developed allowing to detect these tumors and their metastases in patients using in vivo cholecystokinin receptor scintigraphy, proving the feasibility of targeting CCK receptors in human tumors in vivo.
Resumo:
An estimated 2%-3% of the world's population is chronically infected with hepatitis C virus (HCV) and this is a major cause of liver disease worldwide. Following acute infection, outcome is variable with acute HCV successfully resolved in some individuals (20%-30%), but in the majority of cases the virus is able to persist. Co-infection with human immunodeficiency virus has been associated with a negative impact on the course of HCV infection. The host's immune response is an important correlate of HCV infection outcome and disease progression. Natural killer (NK) cells provide a major component of the antiviral immune response by recognising and killing virally infected cells. NK cells modulate their activity through a combination of inhibitory and activatory receptors such as the killer immunoglobulin-like receptors (KIRs) that bind to human leukocyte antigen (HLA) Class I molecules. In this workshop component, we addressed the influence of KIR genotypes and their HLA ligands on resolving HCV infection and we discuss the implications of the results of the study of Lopez-Vazquez et al. on KIR and HCV disease progression.