813 resultados para Demand aggregation
Resumo:
This paper examines the degree to which supply and demand shift across skill groups contributed to the earnings inequality increase in urban China from 1988 to 2002. Product demand shift contributed to an equalizing of earnings distribution in urban China from 1988 to 1995 by increasing the relative product for the low educated. However, it contributed to enlarging inequality from 1995 to 2002 by increasing the relative demand for the highly educated. Relative demand was continuously higher for workers in the coastal region and contributed to a raising of interregional inequality. Supply shift contributed essentially nothing or contributed only slightly to a reduction in inequality. Remaining factors, the largest disequalizer, may contain skill-biased technological and institutional changes, and unobserved supply shift effects due to increasing numbers of migrant workers.
Resumo:
Geographic distance is a standard proxy for transport costs under the simple assumption that freight fees increase monotonically over space. Using the Japanese Census of Logistics, this paper examines the extent to which transport distance and time affect freight costs across shipping modes, commodity groups, and prefecture pairs. The results show substantial heterogeneity in transport costs and time across shipping modes. Consistent with an iceberg formulation of transport costs, distance has a significantly positive effect on freight costs by air transportation. However, I find the puzzling results that business enterprises are likely to pay more for short-distance shipments by truck, ship, and railroad transportation. As a plausible explanation, I discuss aggregation bias arising from freight-specific premiums for timely, frequent, and small-batch shipments.
Resumo:
This study presents a model of economic growth based on saturating demand, where the demand for a good has a certain maximum amount. In this model, the economy grows not only by the improvement in production efficiency in each sector, but also by the migration of production factors (labor in this model) from demand-saturated sectors to the non-saturated sector. It is assumed that the production of a brand-new good will begin after all the existing goods are demand-saturated. Hence, there are cycles where the production of a new good emerges followed by the demand saturation of that good. The model then predicts that should the growth rate be stable and positive in the long run, the above-mentioned cycle must become shorter over time. If the length of cycles is constant over time, the growth rate eventually approaches zero because the number of goods produced grows.
Resumo:
International production fragmentation has been a global trend for decades, becoming especially important in Asia where the manufacturing process is fragmented into stages and dispersed around the region. This paper examines the effects of input and output tariff reductions on labor demand elasticities at the firm level. For this purpose, we consider a simple heterogenous firm model in which firms are allowed to export their products and to use imported intermediate inputs. The model predicts that only productive firms can use imported intermediate inputs (outsourcing) and tend to have larger constant-output labor demand elasticities. Input tariff reductions would lower the factor shares of labor for these productive firms and raise conditional labor demand elasticities further. We test these empirical predictions, constructing Chinese firm-level panel data over the 2000--2006 period. Controlling for potential tariff endogeneity by instruments, our empirical studies generally support these predictions.
Resumo:
Microinsurance is widely considered an important tool for sustainable poverty reduction, especially in the face of increasing climate risk. Although index-based microinsurance, which should be free from the classical incentive problems, has attracted considerable attention, uptake rates have generally been weak in low-income rural communities. We explore the purchase patterns of index-based livestock insurance in southern Ethiopia, focusing in particular on the role of accurate product comprehension and price, including the prospective impact of temporary discount coupons on subsequent period demand due to price anchoring effects. We find that randomly distributed learning kits contribute to improving subjects' knowledge of the products; however, we do not find strong evidence that the improved knowledge per se induces greater uptake. We also find that reduced price due to randomly distributed discount coupons has an immediate, positive impact on uptake, without dampening subsequent period demand due to reference-dependence associated with price anchoring effects.
Resumo:
This study adopts the perspective of demand spillovers to provide new insights regarding Chinese domestic-regions' production position in global value chains and their associated CO2 emissions. To this end, we constructed a new type of World Input-Output Database in which China's domestic interregional input-output table for 2007 is endogenously embedded. Then, the pattern of China's regional demand spillovers across both domestic regions and countries are revealed by employing this new database. These results were further connected to endowments theory, which help to make sense of the empirical results. It is found that China's regions locate relatively upstream in GVCs, and had CO2 emissions in net exports, which were entirely predicted by the environmental extended HOV model. Our study points to micro policy instruments to combat climate change, for example, the tax reform for energy inputs that helps to change the production pattern thus has impact on trade pattern and so forth.
Resumo:
This paper presents the results of the analysis focused on scientific-technological KT in four Mexican firms and carried out by the case study approach. The analysis highlights the use of KT mechanisms as a means to obtain scientific-technological knowledge, learning, building S&T capabilities, and achieve the results of the R&D and innovation by firms.
Resumo:
Predictions about electric energy needs, based on current electric energy models, forecast that the global energy consumption on Earth for 2050 will double present rates. Using distributed procedures for control and integration, the expected needs can be halved. Therefore implementation of Smart Grids is necessary. Interaction between final consumers and utilities is a key factor of future Smart Grids. This interaction is aimed to reach efficient and responsible energy consumption. Energy Residential Gateways (ERG) are new in-building devices that will govern the communication between user and utility and will control electric loads. Utilities will offer new services empowering residential customers to lower their electric bill. Some of these services are Smart Metering, Demand Response and Dynamic Pricing. This paper presents a practical development of an ERG for residential buildings.
Resumo:
Applying biometrics to daily scenarios involves demanding requirements in terms of software and hardware. On the contrary, current biometric techniques are also being adapted to present-day devices, like mobile phones, laptops and the like, which are far from meeting the previous stated requirements. In fact, achieving a combination of both necessities is one of the most difficult problems at present in biometrics. Therefore, this paper presents a segmentation algorithm able to provide suitable solutions in terms of precision for hand biometric recognition, considering a wide range of backgrounds like carpets, glass, grass, mud, pavement, plastic, tiles or wood. Results highlight that segmentation accuracy is carried out with high rates of precision (F-measure 88%)), presenting competitive time results when compared to state-of-the-art segmentation algorithms time performance
Resumo:
New trends in biometrics are oriented to mobile devices in order to increase the overall security in daily actions like bank account access, e-commerce or even document protection within the mobile. However, applying biometrics to mobile devices imply challenging aspects in biometric data acquisition, feature extraction or private data storage. Concretely, this paper attempts to deal with the problem of hand segmentation given a picture of the hand in an unknown background, requiring an accurate result in terms of hand isolation. For the sake of user acceptability, no restrictions are done on background, and therefore, hand images can be taken without any constraint, resulting segmentation in an exigent task. Multiscale aggregation strategies are proposed in order to solve this problem due to their accurate results in unconstrained and complicated scenarios, together with their properties in time performance. This method is evaluated with a public synthetic database with 480000 images considering different backgrounds and illumination environments. The results obtained in terms of accuracy and time performance highlight their capability of being a suitable solution for the problem of hand segmentation in contact-less environments, outperforming competitive methods in literature like Lossy Data Compression image segmentation (LDC).
Resumo:
This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.
Resumo:
Ubiquitous sensor network deployments, such as the ones found in Smart cities and Ambient intelligence applications, require constantly increasing high computational demands in order to process data and offer services to users. The nature of these applications imply the usage of data centers. Research has paid much attention to the energy consumption of the sensor nodes in WSNs infrastructures. However, supercomputing facilities are the ones presenting a higher economic and environmental impact due to their very high power consumption. The latter problem, however, has been disregarded in the field of smart environment services. This paper proposes an energy-minimization workload assignment technique, based on heterogeneity and application-awareness, that redistributes low-demand computational tasks from high-performance facilities to idle nodes with low and medium resources in the WSN infrastructure. These non-optimal allocation policies reduce the energy consumed by the whole infrastructure and the total execution time.
Neural network controller for active demand side management with PV energy in the residential sector
Resumo:
In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation.
Resumo:
Applying foresight tools to determine future demand requirements on tourist destinations
Resumo:
La demanda de contenidos de vídeo ha aumentado rápidamente en los últimos años como resultado del gran despliegue de la TV sobre IP (IPTV) y la variedad de servicios ofrecidos por los operadores de red. Uno de los servicios que se ha vuelto especialmente atractivo para los clientes es el vídeo bajo demanda (VoD) en tiempo real, ya que ofrece una transmisión (streaming) inmediata de gran variedad de contenidos de vídeo. El precio que los operadores tienen que pagar por este servicio es el aumento del tráfico en las redes, que están cada vez más congestionadas debido a la mayor demanda de contenidos de VoD y al aumento de la calidad de los propios contenidos de vídeo. Así, uno de los principales objetivos de esta tesis es encontrar soluciones que reduzcan el tráfico en el núcleo de la red, manteniendo la calidad del servicio en el nivel adecuado y reduciendo el coste del tráfico. La tesis propone un sistema jerárquico de servidores de streaming en el que se ejecuta un algoritmo para la ubicación óptima de los contenidos de acuerdo con el comportamiento de los usuarios y el estado de la red. Debido a que cualquier algoritmo óptimo de distribución de contenidos alcanza un límite en el que no se puede llegar a nuevas mejoras, la inclusión de los propios clientes del servicio (los peers) en el proceso de streaming puede reducir aún más el tráfico de red. Este proceso se logra aprovechando el control que el operador tiene en las redes de gestión privada sobre los equipos receptores (Set-Top Box) ubicados en las instalaciones de los clientes. El operador se reserva cierta capacidad de almacenamiento y streaming de los peers para almacenar los contenidos de vídeo y para transmitirlos a otros clientes con el fin de aliviar a los servidores de streaming. Debido a la incapacidad de los peers para sustituir completamente a los servidores de streaming, la tesis propone un sistema de streaming asistido por peers. Algunas de las cuestiones importantes que se abordan en la tesis son saber cómo los parámetros del sistema y las distintas distribuciones de los contenidos de vídeo en los peers afectan al rendimiento general del sistema. Para dar respuesta a estas preguntas, la tesis propone un modelo estocástico preciso y flexible que tiene en cuenta parámetros como las capacidades de enlace de subida y de almacenamiento de los peers, el número de peers, el tamaño de la biblioteca de contenidos de vídeo, el tamaño de los contenidos y el esquema de distribución de contenidos para estimar los beneficios del streaming asistido por los peers. El trabajo también propone una versión extendida del modelo matemático mediante la inclusión de la probabilidad de fallo de los peers y su tiempo de recuperación en el conjunto de parámetros del modelo. Estos modelos se utilizan como una herramienta para la realización de exhaustivos análisis del sistema de streaming de VoD asistido por los peers para la amplia gama de parámetros definidos en los modelos. Abstract The demand of video contents has rapidly increased in the past years as a result of the wide deployment of IPTV and the variety of services offered by the network operators. One of the services that has especially become attractive to the customers is real-time Video on Demand (VoD) because it offers an immediate streaming of a large variety of video contents. The price that the operators have to pay for this convenience is the increased traffic in the networks, which are becoming more congested due to the higher demand for VoD contents and the increased quality of the videos. Therefore, one of the main objectives of this thesis is finding solutions that would reduce the traffic in the core of the network, keeping the quality of service on satisfactory level and reducing the traffic cost. The thesis proposes a system of hierarchical structure of streaming servers that runs an algorithm for optimal placement of the contents according to the users’ behavior and the state of the network. Since any algorithm for optimal content distribution reaches a limit upon which no further improvements can be made, including service customers themselves (the peers) in the streaming process can further reduce the network traffic. This process is achieved by taking advantage of the control that the operator has in the privately managed networks over the Set-Top Boxes placed at the clients’ premises. The operator reserves certain storage and streaming capacity on the peers to store the video contents and to stream them to the other clients in order to alleviate the streaming servers. Because of the inability of the peers to completely substitute the streaming servers, the thesis proposes a system for peer-assisted streaming. Some of the important questions addressed in the thesis are how the system parameters and the various distributions of the video contents on the peers would impact the overall system performance. In order to give answers to these questions, the thesis proposes a precise and flexible stochastic model that takes into consideration parameters like uplink and storage capacity of the peers, number of peers, size of the video content library, size of contents and content distribution scheme to estimate the benefits of the peer-assisted streaming. The work also proposes an extended version of the mathematical model by including the failure probability of the peers and their recovery time in the set of parameters. These models are used as tools for conducting thorough analyses of the peer-assisted system for VoD streaming for the wide range of defined parameters.