927 resultados para Deleted in colateral cancer receptor
Resumo:
Dans cette thèse, je présente une étude (1) du rôle de la 17β-HSD5 dans la modulation des taux d’hormones et dans la prolifération, et l’impact de l’expression de la 17β-HSD5 sur d’autres protéines de BC cellules; (2) une étude comparative sur trois enzymes (17β-HSD1, 17β-HSD7 et 3α-HSD3) avec la provision de DHEA et ses substrats directes soit l’E1 ou la DHT. Les principaux résultats obtenus dans cette étude sont les suivants: (1) en utilisant l’ARN d’interférence de la 17β-HSD5, des immunodosages enzymatiques et des tests de prolifération de cellules démontrent que l’expression de la 17β-HSD5 est positivement corrélée à un niveau de T et de DHT dans les BCC, mais négativement corrélée pour l’E2 et la prolifération des cellules de BC (2) les analyses quantitatives de PCR en temps réel et de Western blot ont démontré que l’inhibition de l’expression de la 17β-HSD5 régule à la hausse l’expression de l’aromatase dans les cellules MCF-7. (3) L’analyse d’ELISA de la prostaglandine E2 a vérifié que l’expression accrue de l’aromatase a été modulée par des niveaux élevés de PGE2 après l’inactivation de l’expression du gène de la 17β-HSD5. (4) Le test de cicatrisation a montré que l’inactivation de l’expression du gène de la 17β-HSD5 favorise l’augmentation de la migration cellulaire. (5) L’expression du gène 17β-HSD5 dans des échantillons cliniques, à partir de l’analyse de base de données ONCOMINE, a montré que sa plus faible expression a été corrélée avec le statut de l’HER-2 et de la métastase de la tumeur. (6) Les données protéomiques révèlent également que des protéines impliquées dans les voies métaboliques sont fortement exprimées dans les cellules MCF-7 après l’inactivation de l’expression du gène de la 17β-HSD5. (7) L’étude n’a démontré aucune différence dans la fonction biologique de la 17β-HSD1 et de la 17β-HSD7 lorsqu’elles sont cultivées avec différentes stéroïdes: tel que les niveaux de stéroides, la prolifération cellulaire et les protéines régulées. (8) Toutefois, la supplémentation du milieu de culture se révèle avoir un impact marqué sur l’étude de la 3α-HSD3. (9). Nous avons proposé que l’utilisation de la DHEA comme source d’hormone puisse entraîner une meilleure imitation des conditions physiologiques post-ménopausales en culture cellulaire selon l’intracrinologie.
Resumo:
Abstract : 5-Methylcytosine is an epigenetic mark, which can be oxidized to 5-hydroxymethylcytosine (5hmC) in DNA by ten-eleven translocation (TET) oxygenases. It is an initial step in the demethylation of 5mC. Levels of 5hmC is relatively high in the brain compared to other organs, but these levels are known to be significantly reduced during the development of a brain tumor, especially in glioblastoma multiforme (GBM). However, no known mechanisms may fully explain this abnormality. The objectives of my project were to (1) understand the implications of the demethylation pathway mediated by TET, and (2) gain a deeper insight in the epigenetic make-up of brain tumors. (1) U87 cells were incubated with 5mC, 5hmC, 5-formylcytosine (5fC) or co-incubated of 5hmC with 3,4,5,6-tetrahydro-2’-deoxyuridine (dTHU) over a timeline of 0, 24, 48 and 96 hours. (2) 130 brain tumors (GBM= 79; grade II/III= 51) were obtained directly from surgery and immediately suspended in DNA extraction buffer. Both cell samples and tumor tissues underwent DNA extraction and DNA digestion protocols. The percent per cytosine (%/C) was obtained by quantification of 5mC, 5hmC, 5fC, 5-hydroxymethyluracil (5hmU) and 5formyluracil (5fU) using LC-MS/MS. (1) Cellular incubations showed that it is possible to increase levels of 5hmC in DNA, but also a slight increase in 5mC levels throughout the experiment. 5HmC levels dramatically increased by 1.9-fold after 96h. On the other hand, no increase was observed in 5fC levels. Both 5hmC and 5fC incubations were accompanied by high increases in 5hmU and 5fU levels respectively. The addition of dTHU to the 5hmC incubation decreased 5hmU incorporation by 65%. (2) The average levels of 5mC, 5hmC and 5fC, in brain tumors, were 4.0, 0.15 and 0.021 %/C respectively. 5HmU and 5fU levels were present at comparable levels of 5hmC and 5fC. Levels of 5hmC, 5hmU and 5fU were significantly lower in the DNA of GBM specimens. There was a strong correlation between 5mC with 5hmC and 5fC in GBM, but this was absent in low grade tumors. The presence of 5hmU and 5fU in brain tumor and the increase in their levels during cell incubations indicate a deamination activity in these cancerous cells, which may impinge on the cellular levels of 5hmC, in particular. Furthermore, upon the incubations with 5hmC, downstream levels of 5fC did not increase suggesting a TET malfunction. TET activity is maintained in GBMs, but impaired in low grade tumors due to isocitrate dehydrogenase-1 (IDH1) mutations. Therefore, in brain tumors, a strong deamination activity and TET impairment may lead to epigenetic reduction of 5hmC.
Resumo:
Colorectal cancer (CRC) is the third most common cancer in the UK with 41,000 new cases diagnosed in 2011. Despite undergoing potentially curative resection, a significant amount of patients develop recurrence. Biomarkers that aid prognostication or identify patients who are suitable for adjuvant treatments are needed. The TNM staging system does a reasonably good job at offering prognostic information to the treating clinician, but it could be better and identifying methods of improving its accuracy are needed. Tumour progression is based on a complex relationship between tumour behaviour and the hosts’ inflammatory responses. Sustained tumour cell proliferation, evading growth suppressors, resisting apoptosis, replicative immortality, sustained angiogenesis, invasion & metastasis, avoiding immune destruction, deregulated cellular energetics, tumour promoting inflammation and genomic instability & mutation have been identified as hallmarks. These hallmarks are malignant behaviors are what makes the cell cancerous and the more extreme the behaviour the more aggressive the cancer the more likely the risk of a poor outcome. There are two primary genomic instability pathways: Microsatellite Instability (MSI) and Chromosomal Instability (CI) also referred to as Microsatellite Stability (MSS). Tumours arising by these pathways have a predilection for specific anatomical, histological and molecular biological features. It is possible that aberrant molecular expression of genes/proteins that promote malignant behaviors may also act as prognostic and predictive biomarkers, which may offer superior prognostic information to classical prognostic features. Cancer related inflammation has been described as a 7th hallmark of cancer. Despite the systemic inflammatory response (SIR) being associated with more aggressive malignant disease, infiltration by immune cells, particularly CD8+ lymphocytes, at the advancing edge of the tumour have been associated with improved outcome and tumour MSI. It remains unknown if the SIR is associated with tumour MSI and this requires further study. The mechanisms by which colorectal cancer cells locally invade through the bowel remain uncertain, but connective tissue degradation by matrix metalloproteinases (MMPs) such as MMP-9 have been implicated. MMP-9 has been found in the cancer cells, stromal cells and patient circulation. Although tumoural MMP-9 has been associated with poor survival, reports are conflicting and contain relatively small sample sizes. Furthermore, the influence of high serum MMP-9 on survival remains unknown. Src family kinases (SFKs) have been implicated in many adverse cancer cell behaviors. SFKs comprise 9 family members BLK, C-SRC, FGR, FYN, HCK, LCK, LYN, YES, YRK. C-SRC has been the most investigated of all SFKs, but the role of other SFKs in cellular behaviors and their prognostic value remains largely unknown. The development of Src inhibitors, such as Dasatinib, has identified SFKs as a potential therapeutic target for patients at higher risk of poor survival. Unfortunately, clinical trials so far have not been promising but this may reflect inadequate patient selection and SFKs may act as useful prognostic and predictive biomarkers. In chapter 3, the association between cancer related inflammation, tumour MSI, clinicopathological factors and survival was tested in two independent cohorts. A training cohort consisting of n=182 patients and a validation cohort of n=677 patients. MSI tumours were associated with a raised CRP (p=0.003). Hypoalbuminaemia was independently associated with poor overall survival in TNM stage II cancer (HR 3.04 (95% CI 1.44 – 6.43);p=0.004), poor recurrence free survival in TNM stage III cancer (HR 1.86 (95% 1.03 – 3.36);p=0.040) and poor overall survival in CI colorectal cancer (HR 1.49 (95% CI 1.06 – 2.10);p=0.022). Interestingly, MSI tumours were associated with poor overall survival in TNM stage III cancer (HR 2.20 (95% CI 1.10 – 4.37);p=0.025). In chapter 4, the role of MMP-9 in colorectal cancer progression and survival was examined. MMP-9 in the tissue was assessed using IHC and serum expression quantified using ELISA. Serum MMP-9 was associated with cancer cell expression (Spearman’s Correlation Coefficient (SCC) 0.393, p<0.001)) and stromal expression (SCC 0.319, p=0.002). Serum MMP-9 was associated with poor recurrence-free (HR 3.37 (95% CI 1.20 – 9.48);p=0.021) and overall survival (HR 3.16 (95% CI 1.22 – 8.15);p=0.018), but tumour MMP-9 was not survival or MSI status. In chapter 5, the role of SFK expression and activation in colorectal cancer progression and survival was studied. On PCR analysis, although LYN, C-SRC and YES were the most highly expressed, FGR and HCK had higher expression profiles as tumours progressed. Using IHC, raised cytoplasmic FAK (tyr 861) was independently associated with poor recurrence free survival in all cancers (HR 1.48 (95% CI 1.02 – 2.16);p=0.040) and CI cancers (HR 1.50 (95% CI 1.02 – 2.21);p=0.040). However, raised cytoplasmic HCK (HR 2.04 (95% CI 1.11 – 3.76);p=0.022) was independently associated with poor recurrence-free survival in TNM stage II cancers. T84 and HT29 cell lines were used to examine the cellular effects of Dasatinib. Cell viability was assessed using WST-1 assay and apoptosis assessed using an ELISA cell death detection assay. Dasatinib increased T84 tumour cell apoptosis in a dose dependent manner and resulted in reduced expression of nuclear (p=0.008) and cytoplasmic (p=0.016) FAK (tyr 861) expression and increased nuclear FGR expression (p=0.004). The results of this thesis confirm that colorectal cancer is a complex disease that represents several subtypes of cancer based on molecular biological behaviors. This thesis concentrated on features of the disease related to inflammation in terms of genetic and molecular characterisation. MSI cancers are closely associated with systemic inflammation but despite this observation, they retain their relatively improved survival. MMP-9 is a feature of tissue remodeling during inflammation and is also associated with degradation of connective tissue, advanced T-stage and poor outcome when measured in the serum. The lack of stromal quantification due to TMA use rather than full sections makes the value of tumoural MMP-9 immunoreactivity in the prognostication and its association with MSI unknown and requires further study. Finally, SFK activation was also associated with SIR, however, only cytoplasmic HCK was independently associated with poor survival in patients with TNM stage II disease, the group of patients where identifying a novel biomarker is most needed. There is still some way to go before these biomarkers are translated into clinical practice and future work needs to focus on obtaining a reliable and robust scientific technique with validation in an adequately powered independent cohort.
Resumo:
Gastric cancer (GC) is a hard challenge for medical oncology, with globally over one million of new diagnoses each year and low survival rates. Gastric carcinogenesis is guided by the interaction of several risk factors, exerting through sequential histopathologic steps, including chronic gastritis, atrophic gastritis, intestinal metaplasia, dysplasia and cancer. GC is classified on the basis of anatomical, histological or molecular classification, reflecting the wide cancer heterogeneity, also highlighted by the inefficacy of the actual treatment schedules. Epigenetic mechanisms alterations affecting DNA methylation, histone methylation and acetylation, are a recognized hallmark of cancer and stand at the basis of gastric carcinogenesis and tumor development. The pharmacological targeting of these altered mechanisms is an attractive option for new cancer treatments. Aim of this study was to test the therapeutic potential of the compound CM-272 for GC, a selective and strong dual inhibitor of DNMT1 and EHMT2, which reached important results in pre-clinical models of other gastrointestinal malignancies. Moreover, in a GC patients case series, the expression of the target of the compound was tested, to prove the rationale for inhibition of DNMT1, EHMT2 and their functional adaptor were over-expressed in the majority of GC patients tissues. Through in-vitro testing of CM-272 alone and in combination with the most used chemotherapeutic treatments for GC in a panel of GC cell lines, this study demonstrated that the compound has a strong ability in inhibiting GC cells growth. Even though not directly inducing apoptosis, CM-272 was able to induce a senescent phenotype in GC cells, and to epigenetically reprogram the transcription of genes involved in phosphorylation cascades and mitochondria metabolism, thus affecting the growth and energetic machinery of cancer cells. In conclusion, the pharmacological targeting of epigenetic mechanisms demonstrated good potential pre-clinical models of GC, and further investigations to test in-vivo efficacy are needed.
Resumo:
BRCA1 and BRCA2 are the most frequently mutated genes in ovarian cancer (OC), crucial both for the identification of cancer predisposition and therapeutic choices. However, germline variants in other genes could be involved in OC susceptibility. We characterized OC patients to detect mutations in genes other than BRCA1/2 that could be associated with a high risk to develop OC, and that could permit patients to enter the most appropriate treatment and surveillance program. Next-Generation Sequencing analysis with a 94-gene panel was performed on germline DNA of 219 OC patients. We identified 34 pathogenic/likely-pathogenic variants in BRCA1/2 and 38 in other 21 genes. Patients with pathogenic/likely-pathogenic variants in non-BRCA1/2 genes developed mainly OC alone compared to the other groups that developed also breast cancer or other tumors (p=0.001). Clinical correlation analysis showed that low-risk patients were significantly associated with platinum sensitivity (p<0.001). Regarding PARP inhibitors (PARPi) response, patients with pathogenic mutations in non-BRCA1/2 genes had significantly worse PFS and OS. Moreover, a statistically significant worse PFS was found for every increase of one thousand platelets before PARPi treatment. To conclude, knowledge about molecular alterations in genes beyond BRCA1/2 in OC could allow for more personalized diagnostic, predictive, prognostic, and therapeutic strategies for OC patients.
Resumo:
Cancer is the second leading cause of mortality worldwide. Cancer progression leads to metastasis formation, which accounts for more than ninety percent of cancer-related death. Metastases are more difficult to be surgically removed because of their invasive behavior and shape. In addition, during their transformation journey, they become more and more resistant to anticancer drugs. Significant improvements have been achieved in therapy against cancer in recent years but targeting the metastatic cascade remains the Achilles heel of the cure against cancer. A First step in the metastatic process is the escape of cancer cells from the primary tumor site. This involves an increase in cell motility and the concomitant ability to clear a path through the extracellular matrix. From a therapeutic point of view, inhibition of cell migration is a logical approach to develop anti-metastatic drugs. Our lab previously developed a cell permeable peptide derived from a caspase-3-generaied fragment of the RasGAP protein called TAT-RasGAP317-326. This peptide efficiently and specifically sensitizes cancer cells to chemotherapy- and radiotherapy-induced ceil death, which allows decreasing the anticancer drug doses and eventually their associated side- effects. In the present study we discovered that TAT-RasGAP317.326 also increases cell adhesion which was associated with inhibition of cell migration and invasion into the extracellular matrix. The ability of TAT-RasGAP317.326 to increase ceil adhesion involves the dramatic depolymerization of actin cytoskekton together with redistribution of focal adhesions. We found that the inhibitory effects on migration were mediated by a RhoGAP tumor and metastasis suppressor cailed DLC1 (Deleted in Liver Cancer 1). Moreover. DEC 1 was found to be a direct RasGAP-interacting protein and this interaction requires the RasGAP tryptophan 317 residue, the very first RasGAP residue of TAT-RasGAP317.326. We then evaluated the roie of RasGAP fragments in the in vivo metastatic cascade. We found that breast cancer cells overexpressing the parental RasGAP fragment, to which the TAT-RasGAP317.326 peptide belongs, have a markedly decreased ability to form lung metastases. Unfortunately, we were not able to recapitulate these an ti-metastatic effects when TAT-RasGAP317.326 was injected. However, we later understood that this was due to the fact that TAT-RasGAP317.326 was not properly delivered to the primary tumors. Further work, aimed at better understanding of how TAT-RasGAP317.326 functions, revealed that the ten amino acid TAT-RasGAP317.326 peptide could, be narrowed down to a three amino acid TAT-RasGAP317.329 peptide while keeping its sensitizer activity. In parallel, investigations on the RasGAP-DLCl binding indicated that the arginine linger of the DLC1 GAP domain is required for this interaction, which suggests that TAT-RasGAP317.326 modulates the GAP activity of DLC1. Additional work should be performed to fully elucidate its mechanism of action and render TAT-RasGAP317.326 usable as a tool to fight cancer on two fronts, by improving chemotherapy and preventing metastatic progression. - Le cancer est la deuxième cause de mortalité dans le monde. La formation de métastases est la dernière étape de la progression cancéreuse et représente plus du nonante pour cent des morts induites par le cancer. De par leur morphologie et comportement invasifs, ii est difficile d'avoir recours à la chirurgie pour exciser des métastases. De plus, les cellules cancéreuses en progression deviennent souvent de plus en plus résistantes aux drogues anticancéreuses. Ces dernières années, des avancements significatifs ont contribué à l'amélioration de la lutte contre le cancer. Néanmoins, pouvoir cibler spécifiquement la cascade métastatique demeure cependant le talon d'Achille des thérapies anticancéreuses. Une première étape dans ie processus métastatique est l'évasion des cellules cancéreuses du site de la tumeur primaire. Ceci requiert une augmentation de la motiliié cellulaire couplée à la capacité de se frayer un chemin au sein de la matrice extracelluiaire. D'un point de vue thérapeutique, inhiber la migration cellulaire est une approche attrayante. Notre laboratoire a développé un peptide, nommé TAT-RasGAP317.326 dérivé d'un fragment qui est lui-même le résultat du clivage de la protéine RasGAP par la caspase-3. Ce peptide est capable de pénétrer les cellules cancéreuses et de les sensibiliser spécifiquement à la mort induite par la radiothérapie et la chimiothérapie. La finalité des effets de ce peptide est de pouvoir diminuer les doses des traitements anti-cancéreux et donc des effets secondaires qu'ils engendrent. Dans cette étude, nous avons découvert que TAT-RasGAP317.326 augmente l'adhésion des cellules et inhibe la migration cellulaire ainsi que l'invasion des cellules à travers une matrice extracellulaire. La capacité de TAT-RasGAP317.326 à induire l'adhésion repose sur ia dépolymérisation du cytosquelette d'actine associée à une redistribution des points d'ancrage cellulaire. Nous avons découvert que l'inhibition de ia migration par TAT-RasGAP317.326 nécessitait la présence d'un suppresseur de tumeur et de métastases appelé DLC1 (Deleted in Liver Cancer l), qui par ailleurs s'avère aussi être une protéine RhoGAP. De plus, nous avons aussi trouvé que DLC1 était un partenaire d'interaction de RasGAP et que cette interaction s'effectuait via l'acide aminé tryptophane 317 de RasGAP. qui s'avère être le premier acide aminé du peptide TAT-RasGAP317.326. Nous avons ensuite évalué le rôle joué par certains fragments de RasGAP dans le processus de métastatisation. Dans ce contexte, des cellules de cancer du sein qui sur-expriment un fragment de RasGAP contenant la séquence TAT-RasGAP317.326 ont vu leur potentiel métastatique diminuer drastiquerment. Malheureusement, aucun effet anti-métastatique n'a été obtenu après injection de TAT-RasGAP317.326 dans les souris. Cependant, nous avons réalisé rétrospectivement que TAT-RasGAP317.326 n'était pas correctement délivré à la tumeur primaire, ce qui nous empêche de tirer des conclusions sur le rôle anti-métastatique de ce peptide. La suite de cette étude visant à mieux comprendre comment TAT-RasGAP317.326 agit, a mené à la découverte que les dix acides aminés de TAT-RasGAP317.326 pouvaient être réduits à trois acides aminés, TAT-RasGAP317.329, tout en gardant l'effet sensibilisateur à la chimiothérapie. En visant à élucider le mode d'interaction entre RasGAP et DLC1, nous avons découvert qu'un acide aminé nécessaire à l'activité GAP de DLC1 était requis pour lier RasGAP, ce qui laisse présager que TAT-RasGAp317.32c, module i'activité GAP de DLC1. Des travaux supplémentaires doivent encore être effectués pour complètement élucider les mécanismes d'action de TAT-RasGAP317.326 et afin de pouvoir l'utiliser comme un outil pour combattre le cancer sur deux fronts, en améliorant les chimiothérapies et en inhibant la formation de métastases.
Resumo:
TAT-RasGAP317-326, a peptide corresponding to the 317-326 sequence of p120 RasGAP coupled with a cell-permeable TAT-derived peptide, sensitizes the death response of various tumor cells to several anticancer treatments. We now report that this peptide is also able to increase cell adherence, prevent cell migration and inhibit matrix invasion. This is accompanied by a marked modification of the actin cytoskeleton and focal adhesion redistribution. Interestingly, integrins and the small Rho GTP-binding protein, which are well-characterized proteins modulating actin fibers, adhesion and migration, do not appear to be required for the pro-adhesive properties of TAT-RasGAP317-326. In contrast, deleted in liver cancer-1, a tumor suppressor protein, the expression of which is often deregulated in cancer cells, was found to be required for TAT-RasGAP317-326 to promote cell adherence and inhibit migration. These results show that TAT-RasGAP317-326, besides its ability to favor tumor cell death, hampers cell migration and invasion.
Resumo:
TAT-RasGAP317-326, a cell-permeable 10-amino acid-long peptide derived from the N2 fragment of p120 Ras GTPase-activating protein (RasGAP), sensitizes tumor cells to apoptosis induced by various anticancer therapies. This RasGAP-derived peptide, by targeting the deleted in liver cancer-1 (DLC1) tumor suppressor, also hampers cell migration and invasion by promoting cell adherence and by inhibiting cell movement. Here, we systematically investigated the role of each amino acid within the RasGAP317-326 sequence for the anticancer activities of TAT-RasGAP317-326. We report here that the first three amino acids of this sequence, tryptophan, methionine, and tryptophan (WMW), are necessary and sufficient to sensitize cancer cells to cisplatin-induced apoptosis and to reduce cell migration. The WMW motif was found to be critical for the binding of fragment N2 to DLC1. These results define the interaction mode between the active anticancer sequence of RasGAP and DLC1. This knowledge will facilitate the design of small molecules bearing the tumor-sensitizing and antimetastatic activities of TAT-RasGAP317-326.
Resumo:
The pro-apoptotic BCL-2 family member BOK is widely expressed and resembles the multi-BH domain proteins BAX and BAK based on its amino acid sequence. The genomic region encoding BOK was reported to be frequently deleted in human cancer and it has therefore been hypothesized that BOK functions as a tumor suppressor. However, little is known about the molecular functions of BOK. We show that enforced expression of BOK activates the intrinsic (mitochondrial) apoptotic pathway in BAX/BAK-proficient cells but fails to kill cells lacking both BAX and BAK or sensitize them to cytotoxic insults. Interestingly, major portions of endogenous BOK are localized to and partially inserted into the membranes of the Golgi apparatus as well as the endoplasmic reticulum (ER) and associated membranes. The C-terminal transmembrane domain of BOK thereby constitutes a 'tail-anchor' specific for targeting to the Golgi and ER. Overexpression of full-length BOK causes early fragmentation of ER and Golgi compartments. A role for BOK on the Golgi apparatus and the ER is supported by an abnormal response of Bok-deficient cells to the Golgi/ER stressor brefeldin A. Based on these results, we propose that major functions of BOK are exerted at the Golgi and ER membranes and that BOK induces apoptosis in a manner dependent on BAX and BAK.
Resumo:
Glioblastoma multiforme is the most common form of brain cancer that presents patients with a poor prognosis that has remained unchanged over the past few decades. The tumor suppressor phosphatase PTEN antagonizes one of the major oncogenic pathways involved in the progression of glioblastoma, and is frequently deleted in this cancer type. Contrary to our expectations, we found that most glioblastoma cells expressing endogenous PTEN also harbor basal PI-3K/AKT activation mainly attributable to impaired PTEN membrane localization. This alteration correlated with a shift of the adaptor protein NHERF1, which contributes to PTEN membrane recruitment in normal cells, from the membrane to the cytoplasm. In cells expressing membrane-localized NHERF1, only simultaneous PTEN and NHERF1 depletion achieved AKT activation, suggesting the involvement of additional PI-3K/AKT suppressor regulated by NHERF1. We identified these novel interactors of NHERF1 as the PHLPP1 and PHLPP2 phosphatases. ^ NHERF1 directly interacted and recruited both PHLPP proteins to the membrane and, through both NHERF1 PDZ domains, assembled ternary complexes consisting of PTEN-NHERF1-PHLPP. Only simultaneous depletion of PTEN and PHLPP1 significantly activated AKT and increased proliferation in cells with membrane-localized NHERF1. Analysis of glioblastoma human tumors revealed frequent loss of membrane-localized NHERF1. On the other hand, targeting of NHERF1 to the membrane achieved suppression of AKT and cell proliferation. Our findings reveal a novel mechanism for PI-3K/AKT regulation by the synergistic cooperation between two important tumor suppressors, PTEN and PHLPP, via the scaffold protein NHERF1. ^
Resumo:
Two molecular epidemiological studies were conducted to examine associations between genetic variation and risk of squamous cell carcinoma of the head and neck (SCCHN). In the first study, we hypothesized that genetic variation in p53 response elements (REs) may play roles in the etiology of SCCHN. We selected and genotyped five polymorphic p53 REs as well as a most frequently studied p53 codon 72 (Arg72Pro, rs1042522) polymorphism in 1,100 non-Hispanic White SCCHN patients and 1,122 age-and sex-matched cancer-free controls recruited at The University of Texas M. D. Anderson Cancer Center. In multivariate logistic regression analysis with adjustment for age, sex, smoking and drinking status, marital status and education level, we observed that the EOMES rs3806624 CC genotype had a significant effect of protection against SCCHN risk (adjusted odds ratio= 0.79, 95% confidence interval =0.64–0.98), compared with the -838TT+CT genotypes. Moreover, a significantly increased risk associated with the combined genotypes of p53 codon 72CC and EOMES -838TT+CT was observed, especially in the subgroup of non-oropharyneal cancer patients. The values of false-positive report probability were also calculated for significant findings. In the second study, we assessed the association between SCCHN risk and four potential regulatory single nucleotide polymorphisms (SNPs) of DEC1 (deleted in esophageal cancer 1) gene, a candidate tumor suppressor gene for esophageal cancer. After adjustment for age, sex, and smoking and drinking status, the variant -606CC (i.e., -249CC) homozygotes had a significantly reduced SCCHN risk (adjusted odds ratio = 0.71, 95% confidence interval = 0.52–0.99), compared with the -606TT homozygotes. Stratification analyses showed that a reduced risk associated with the -606CC genotype was more pronounced in subgroups of non-smokers, non-drinkers, younger subjects (defined as ≤ 57 years), carriers of TP53 Arg/Arg (rs1042522) genotype, patients with oropharyngeal cancer or late-stage SCCHN. Further in silico analysis revealed that the -249 T-to-C change led to a gain of a transcription factor binding site. Additional functional analysis showed that the -249T-to-C change significantly enhanced transcriptional activity of the DEC1 promoter and the DNA-protein binding activity. We conclude that the DEC1 promoter -249 T>C (rs2012775) polymorphism is functional, modulating susceptibility to SCCHN among non-Hispanic Whites. Additional large-scale, preferably population-based studies are needed to validate our findings.^
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a ligand-activated transcription factor that has been linked with rodent hepatocarcinogenesis. It has been suggested that PPARalpha mRNA expression levels are an important determinant of rodent hepatic tumorigenicity. Previous work in rat mammary gland epithelial cells showed significantly increased PPARalpha mRNA expression in carcinomas, suggesting the possible role of this isoform in rodent mammary gland carcinogenesis. In this study we sought to determine whether PPARalpha is expressed and dynamically regulated in human breast cancer MCF-7 and MDA-MB-231 cells. Having established the presence of PPARalpha in both cell types, we then examined the consequence of PPARa activation, by its ligands Wy-14,643 and clofibrate, on proliferation. With real-time reverse transcriptase-polymerase chain reaction, we showed that PPARalpha mRNA was dynamically regulated in MDA-MB-231 cells and that PPARalpha activation significantly increased proliferation of the cell line. In contrast, PPARalpha expression in MCF-7 cells did not change with proliferation during culture and was present at significantly lower levels than in MDA-MB-231 cells. However, PPARalpha ligand activation still significantly increased the proliferation of MCF-7 cells. The promotion of proliferation in breast cancer cell lines following PPARalpha activation was in stark contrast to the effects of PPARgamma-activating ligands that decrease proliferation in human breast cancer cells. our results established the presence of PPARalpha in human breast cancer cell lines and showed for the first time that activation of PPARalpha in human breast cancer cells promoted proliferation. Hence, this pathway may be significant in mammary gland tumorigenesis. (C) 2002 Wiley-Liss, Inc.
Resumo:
BACKGROUND: Postmenopausal women with hormone receptor-positive early breast cancer have persistent, long-term risk of breast-cancer recurrence and death. Therefore, trials assessing endocrine therapies for this patient population need extended follow-up. We present an update of efficacy outcomes in the Breast International Group (BIG) 1-98 study at 8·1 years median follow-up. METHODS: BIG 1-98 is a randomised, phase 3, double-blind trial of postmenopausal women with hormone receptor-positive early breast cancer that compares 5 years of tamoxifen or letrozole monotherapy, or sequential treatment with 2 years of one of these drugs followed by 3 years of the other. Randomisation was done with permuted blocks, and stratified according to the two-arm or four-arm randomisation option, participating institution, and chemotherapy use. Patients, investigators, data managers, and medical reviewers were masked. The primary efficacy endpoint was disease-free survival (events were invasive breast cancer relapse, second primaries [contralateral breast and non-breast], or death without previous cancer event). Secondary endpoints were overall survival, distant recurrence-free interval (DRFI), and breast cancer-free interval (BCFI). The monotherapy comparison included patients randomly assigned to tamoxifen or letrozole for 5 years. In 2005, after a significant disease-free survival benefit was reported for letrozole as compared with tamoxifen, a protocol amendment facilitated the crossover to letrozole of patients who were still receiving tamoxifen alone; Cox models and Kaplan-Meier estimates with inverse probability of censoring weighting (IPCW) are used to account for selective crossover to letrozole of patients (n=619) in the tamoxifen arm. Comparison of sequential treatments to letrozole monotherapy included patients enrolled and randomly assigned to letrozole for 5 years, letrozole for 2 years followed by tamoxifen for 3 years, or tamoxifen for 2 years followed by letrozole for 3 years. Treatment has ended for all patients and detailed safety results for adverse events that occurred during the 5 years of treatment have been reported elsewhere. Follow-up is continuing for those enrolled in the four-arm option. BIG 1-98 is registered at clinicaltrials.govNCT00004205. FINDINGS: 8010 patients were included in the trial, with a median follow-up of 8·1 years (range 0-12·4). 2459 were randomly assigned to monotherapy with tamoxifen for 5 years and 2463 to monotherapy with letrozole for 5 years. In the four-arm option of the trial, 1546 were randomly assigned to letrozole for 5 years, 1548 to tamoxifen for 5 years, 1540 to letrozole for 2 years followed by tamoxifen for 3 years, and 1548 to tamoxifen for 2 years followed by letrozole for 3 years. At a median follow-up of 8·7 years from randomisation (range 0-12·4), letrozole monotherapy was significantly better than tamoxifen, whether by IPCW or intention-to-treat analysis (IPCW disease-free survival HR 0·82 [95% CI 0·74-0·92], overall survival HR 0·79 [0·69-0·90], DRFI HR 0·79 [0·68-0·92], BCFI HR 0·80 [0·70-0·92]; intention-to-treat disease-free survival HR 0·86 [0·78-0·96], overall survival HR 0·87 [0·77-0·999], DRFI HR 0·86 [0·74-0·998], BCFI HR 0·86 [0·76-0·98]). At a median follow-up of 8·0 years from randomisation (range 0-11·2) for the comparison of the sequential groups with letrozole monotherapy, there were no statistically significant differences in any of the four endpoints for either sequence. 8-year intention-to-treat estimates (each with SE ≤1·1%) for letrozole monotherapy, letrozole followed by tamoxifen, and tamoxifen followed by letrozole were 78·6%, 77·8%, 77·3% for disease-free survival; 87·5%, 87·7%, 85·9% for overall survival; 89·9%, 88·7%, 88·1% for DRFI; and 86·1%, 85·3%, 84·3% for BCFI. INTERPRETATION: For postmenopausal women with endocrine-responsive early breast cancer, a reduction in breast cancer recurrence and mortality is obtained by letrozole monotherapy when compared with tamoxifen montherapy. Sequential treatments involving tamoxifen and letrozole do not improve outcome compared with letrozole monotherapy, but might be useful strategies when considering an individual patient's risk of recurrence and treatment tolerability. FUNDING: Novartis, United States National Cancer Institute, International Breast Cancer Study Group.
Resumo:
BACKGROUND: Peroxisome proliferator activated receptors (PPARs) are nuclear hormone receptors involved in genetic control of many cellular processes. PPAR and PPAR have been implicated in colonic malignancy. Here we provide three lines of evidence suggesting an inhibitory role for PPAR in colorectal cancer development. METHODS: Levels of PPAR mRNA and protein in human colorectal cancers were compared with matched non-malignant mucosa using RNAse protection and western blotting. APC(Min)/+ mice were randomised to receive the PPAR activator methylclofenapate 25 mg/kg or vehicle for up to 16 weeks, and small and large intestinal polyps were quantified by image analysis. The effect of methylclofenapate on serum stimulated mitogenesis (thymidine incorporation), linear cell growth, and annexin V and propidium iodide staining were assessed in human colonic epithelial cells. RESULTS: PPAR (mRNA and protein) expression levels were significantly depressed in colorectal cancer compared with matched non-malignant tissue. Methylclofenapate reduced polyp area in the small intestine from 18.7 mm(2) (median (interquartile range 11.1, 26.8)) to 9.90 (4.88, 13.21) mm(2) (p=0.003) and in the colon from 9.15 (6.31, 10.5) mm(2) to 3.71 (2.71, 5.99) mm(2) (p=0.009). Methylclofenapate significantly reduced thymidine incorporation and linear cell growth with no effect on annexin V or propidium iodide staining. CONCLUSIONS: PPAR may inhibit colorectal tumour progression, possibly via inhibition of proliferation, and may be an important therapeutic target.
Resumo:
The aim of this study was to describe the demographic, clinicopathological, biological and morphometric features of Libyan breast cancer patients. The supporting value of nuclear morphometry and static image cytometry in the sensitivity for detecting breast cancer in conventional fine-needle aspiration biopsies were estimated. The findings were compared with findings in breast cancer in Finland and Nigeria. In addation, the value of ER and PR were evaluated. There were 131 histological samples, 41 cytological samples, and demographic and clinicopathological data from 234 Libyan patients. The Libyan breast cancer is dominantly premenopausal and in this feature it is similar to breast cancer in sub-Saharan Africans, but clearly different from breast cancer in Europeans, whose cancers are dominantly postmenopausal in character. At presention most Libyan patients have locally advanced disease, which is associated with poor survival rates. Nuclear morphometry and image DNA cytometry agree with earlier published data in the Finnish population and indicate that nuclear size and DNA analysis of nuclear content can be used to increase the cytological sensitivity and specificity in doubtful breast lesions, particularly when free cell sampling method is used. Combination of the morphometric data with earlier free cell data gave the following diagnostic guidelines: Range of overlap in free cell samples: 55 μm2 -71 μm2. Cut-off values for diagnostic purposes: Mean nuclear area (MNA) >54 μm2 for 100% detection of malignant cases (specificity 84 %), MNA < 72 μm2 for 100% detection of benign cases (sensitivity 91%). Histomorphometry showed a significant correlation between the MNA and most clinicopathological features, with the strongest association observed for histological grade (p <0.0001). MNA seems to be a prognosticator in Libyan breast cancer (Pearson’s test r = - 0.29, p = 0.019), but at lower level of significance than in the European material. A corresponding relationship was not found in shape-related morphometric features. ER and PR staining scores were in correlation with the clinical stage (p= 0.017, and 0.015, respectively), and also associated with lymph node negative patients (p=0.03, p=0.05, respectively). Receptor-positive (HR+) patients had a better survival. The fraction of HR+ cases among Libyan breast cancers is about the same as the fraction of positive cases in European breast cancer. The study suggests that also weak staining (corresponding to as few as 1% positive cells) has prognostic value. The prognostic significance may be associated with the practice to use antihormonal therapy in HR+ cases. The low survival and advanced presentation is associated with active cell proliferation, atypical nuclear morphology and aneuploid nuclear DNA content in Libyan breast cancer patients. The findings support the idea that breast cancer is not one type of disease, but should probably be classified into premenopausal and post menopausal types.