783 resultados para Data Mining and Machine Learning
Resumo:
Supported file formats: - CrossRef XML file(s) - TRiDaS (Tree Ring Data Standard, http://www.tridas.org). Example: hdl:10013/epic.42747.d001 - IMMA (International Maritime Meteorological Archive). Used by the project CLIWOC (García-Herrera et al. 2007, http://doi.pangaea.de/10.1594/PANGAEA.743343) - NOAA IOAS (International Ocean Atlas Series). Example: hdl:10013/epic.42747.d008 - SOCAT (Surface Ocean CO2 Atlas, Bakker et al. 2014, http://doi.pangaea.de/10.1594/PANGAEA.811776) - CHUAN (Comprehensive Historical Upper-Air Network, Stickler et al. 2013, http://doi.pangaea.de/10.1594/PANGAEA.821222). Example: hdl:10013/epic.42747.d003 - Thermosalinograph (TSG) data. Format developed by Gerd Rohardt. Example: hdl:10013/epic.42747.d002 - Columus GPS Data Logger V-900 format to KML or GPX. Example: hdl:10013/epic.42747.d006
Resumo:
We present the data structures and algorithms used in the approach for building domain ontologies from folksonomies and linked data. In this approach we extracts domain terms from folksonomies and enrich them with semantic information from the Linked Open Data cloud. As a result, we obtain a domain ontology that combines the emergent knowledge of social tagging systems with formal knowledge from Ontologies.
Resumo:
PART I:Cross-section uncertainties under differentneutron spectra. PART II: Processing uncertainty libraries
Resumo:
Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules.
Resumo:
El objetivo de este proyecto es diseñar un sistema capaz de controlar la velocidad de rotación de un motor DC en función del valor de temperatura obtenido de un sensor. Para ello se generará con un microcontrolador una señal PWM, cuyo ciclo de trabajo estará en función de la temperatura medida. En lo que respecta a la fase de diseño, hay dos partes claramente diferenciadas, relativas al hardware y al software. En cuanto al diseño del hardware puede hacerse a su vez una división en dos partes. En primer lugar, hubo que diseñar la circuitería necesaria para adaptar los niveles de tensión entregados por el sensor de temperatura a los niveles requeridos por ADC, requerido para digitalizar la información para su posterior procesamiento por parte del microcontrolador. Por tanto hubo que diseñar capaz de corregir el offset y la pendiente de la función tensión-temperatura del sensor, a fin de adaptarlo al rango de tensión requerido por el ADC. Por otro lado, hubo que diseñar el circuito encargado de controlar la velocidad de rotación del motor. Este circuito estará basado en un transistor MOSFET en conmutación, controlado mediante una señal PWM como se mencionó anteriormente. De esta manera, al variar el ciclo de trabajo de la señal PWM, variará de manera proporcional la tensión que cae en el motor, y por tanto su velocidad de rotación. En cuanto al diseño del software, se programó el microcontrolador para que generase una señal PWM en uno de sus pines en función del valor entregado por el ADC, a cuya entrada está conectada la tensión obtenida del circuito creado para adaptar la tensión generada por el sensor. Así mismo, se utiliza el microcontrolador para representar el valor de temperatura obtenido en una pantalla LCD. Para este proyecto se eligió una placa de desarrollo mbed, que incluye el microcontrolador integrado, debido a que facilita la tarea del prototipado. Posteriormente se procedió a la integración de ambas partes, y testeado del sistema para comprobar su correcto funcionamiento. Puesto que el resultado depende de la temperatura medida, fue necesario simular variaciones en ésta, para así comprobar los resultados obtenidos a distintas temperaturas. Para este propósito se empleó una bomba de aire caliente. Una vez comprobado el funcionamiento, como último paso se diseñó la placa de circuito impreso. Como conclusión, se consiguió desarrollar un sistema con un nivel de exactitud y precisión aceptable, en base a las limitaciones del sistema. SUMMARY: It is obvious that day by day people’s daily life depends more on technology and science. Tasks tend to be done automatically, making them simpler and as a result, user life is more comfortable. Every single task that can be controlled has an electronic system behind. In this project, a control system based on a microcontroller was designed for a fan, allowing it to go faster when temperature rises or slowing down as the environment gets colder. For this purpose, a microcontroller was programmed to generate a signal, to control the rotation speed of the fan depending on the data acquired from a temperature sensor. After testing the whole design developed in the laboratory, the next step taken was to build a prototype, which allows future improvements in the system that are discussed in the corresponding section of the thesis.
Resumo:
The uptake of Linked Data (LD) has promoted the proliferation of datasets and their associated ontologies for describing different domains. Par-ticular LD development characteristics such as agility and web-based architec-ture necessitate the revision, adaption, and lightening of existing methodologies for ontology development. This thesis proposes a lightweight method for ontol-ogy development in an LD context which will be based in data-driven agile de-velopments, existing resources to be reused, and the evaluation of the obtained products considering both classical ontological engineering principles and LD characteristics.
Resumo:
Abstract is not available.
Resumo:
The objective of this thesis is model some processes from the nature as evolution and co-evolution, and proposing some techniques that can ensure that these learning process really happens and useful to solve some complex problems as Go game. The Go game is ancient and very complex game with simple rules which still is a challenge for the Artificial Intelligence. This dissertation cover some approaches that were applied to solve this problem, proposing solve this problem using competitive and cooperative co-evolutionary learning methods and other techniques proposed by the author. To study, implement and prove these methods were used some neural networks structures, a framework free available and coded many programs. The techniques proposed were coded by the author, performed many experiments to find the best configuration to ensure that co-evolution is progressing and discussed the results. Using co-evolutionary learning processes can be observed some pathologies which could impact co-evolution progress. In this dissertation is introduced some techniques to solve pathologies as loss of gradients, cycling dynamics and forgetting. According to some authors, one solution to solve these co-evolution pathologies is introduce more diversity in populations that are evolving. In this thesis is proposed some techniques to introduce more diversity and some diversity measurements for neural networks structures to monitor diversity during co-evolution. The genotype diversity evolved were analyzed in terms of its impact to global fitness of the strategies evolved and their generalization. Additionally, it was introduced a memory mechanism in the network neural structures to reinforce some strategies in the genes of the neurons evolved with the intention that some good strategies learned are not forgotten. In this dissertation is presented some works from other authors in which cooperative and competitive co-evolution has been applied. The Go board size used in this thesis was 9x9, but can be easily escalated to more bigger boards.The author believe that programs coded and techniques introduced in this dissertation can be used for other domains.
Resumo:
A sustainable manufacturing process must rely on an also sustainable raw materials and energy supply. This paper is intended to show the results of the studies developed on sustainable business models for the minerals industry as a fundamental previous part of a sustainable manufacturing process. As it has happened in other economic activities, the mining and minerals industry has come under tremendous pressure to improve its social, developmental, and environmental performance. Mining, refining, and the use and disposal of minerals have in some instances led to significant local environmental and social damage. Nowadays, like in other parts of the corporate world, companies are more routinely expected to perform to ever higher standards of behavior, going well beyond achieving the best rate of return for shareholders. They are also increasingly being asked to be more transparent and subject to third-party audit or review, especially in environmental aspects. In terms of environment, there are three inter-related areas where innovation and new business models can make the biggest difference: carbon, water and biodiversity. The focus in these three areas is for two reasons. First, the industrial and energetic minerals industry has significant footprints in each of these areas. Second, these three areas are where the potential environmental impacts go beyond local stakeholders and communities, and can even have global impacts, like in the case of carbon. So prioritizing efforts in these areas will ultimately be a strategic differentiator as the industry businesses continues to grow. Over the next forty years, world?s population is predicted to rise from 6.300 million to 9.500 million people. This will mean a huge demand of natural resources. Indeed, consumption rates are such that current demand for raw materials will probably soon exceed the planet?s capacity. As awareness of the actual situation grows, the public is demanding goods and services that are even more environmentally sustainable. This means that massive efforts are required to reduce the amount of materials we use, including freshwater, minerals and oil, biodiversity, and marine resources. It?s clear that business as usual is no longer possible. Today, companies face not only the economic fallout of the financial crisis; they face the substantial challenge of transitioning to a low-carbon economy that is constrained by dwindling natural resources easily accessible. Innovative business models offer pioneering companies an early start toward the future. They can signal to consumers how to make sustainable choices and provide reward for both the consumer and the shareholder. Climate change and carbon remain major risk discontinuities that we need to better understand and deal with. In the absence of a global carbon solution, the principal objective of any individual country should be to reduce its global carbon emissions by encouraging conservation. The mineral industry internal response is to continue to focus on reducing the energy intensity of our existing operations through energy efficiency and the progressive introduction of new technology. Planning of the new projects must ensure that their energy footprint is minimal from the start. These actions will increase the long term resilience of the business to uncertain energy and carbon markets. This focus, combined with a strong demand for skills in this strategic area for the future requires an appropriate change in initial and continuing training of engineers and technicians and their awareness of the issue of eco-design. It will also need the development of measurement tools for consistent comparisons between companies and the assessments integration of the carbon footprint of mining equipments and services in a comprehensive impact study on the sustainable development of the Economy.
Resumo:
This paper focuses on the general problem of coordinating multiple robots. More specifically, it addresses the self-selection of heterogeneous specialized tasks by autonomous robots. In this paper we focus on a specifically distributed or decentralized approach as we are particularly interested in a decentralized solution where the robots themselves autonomously and in an individual manner, are responsible for selecting a particular task so that all the existing tasks are optimally distributed and executed. In this regard, we have established an experimental scenario to solve the corresponding multi-task distribution problem and we propose a solution using two different approaches by applying Response Threshold Models as well as Learning Automata-based probabilistic algorithms. We have evaluated the robustness of the algorithms, perturbing the number of pending loads to simulate the robot’s error in estimating the real number of pending tasks and also the dynamic generation of loads through time. The paper ends with a critical discussion of experimental results.