938 resultados para DROSOPHILA GUT IMMUNITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copia is a retrotransposon that appears to be distributed widely among the Drosophilidae subfamily. Evolutionary analyses of regulatory regions have indicated that the Copia retrotransposon evolved through both positive and purifying selection, and that horizontal transfer (HT) could also explain its patchy distribution of the among the subfamilies of the melanogaster subgroup. Additionally, Copia elements could also have transferred between melanogaster subgroup and other species of Drosophilidae-D. willistoni and Z. tuberculatus. In this study, we surveyed seven species of the Zaprionus genus by sequencing the LTR-ULR and reverse transcriptase regions, and by using RT-PCR in order to understand the distribution and evolutionary history of Copia in the Zaprionus genus. The Copia element was detected, and was transcriptionally active, in all species investigated. Structural and selection analysis revealed Zaprionus elements to be closely related to the most ancient subfamily of the melanogaster subgroup, and they seem to be evolving mainly under relaxed purifying selection. Taken together, these results allowed us to classify the Zaprionus sequences as a new subfamily-ZapCopia, a member of the Copia retrotransposon family of the melanogaster subgroup. These findings indicate that the Copia retrotransposon is an ancient component of the genomes of the Zaprionus species and broaden our understanding of the diversity of retrotransposons in the Zaprionus genus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies to specific nucleic acid conformations are amongst the methods that have allowed the study of non-canonical (Watson-Crick) DNA structures in higher organisms. In this work, the structural limitations for the immunological detection of DNA.RNA hybrid duplexes were examined using specific RNA homopolymers as probes for homopolymer polydeoxyadenylic acid (poly(dA)).polydeoxythymidylic acid (poly(dT))-rich regions of Rhynchosciara americana (Diptera: Sciaridae) chromosomes. Anti-DNA.RNA duplexes did not react with the complex formed between chromosomal poly(dA) and exogenous polyuridylic acid (poly(rU)). Additionally, poly(rU) prevented the detection of polyadenylic acid.poly(dT) hybrid duplexes preformed in situ. These results raised the possibility that three-stranded structures rather than duplexes were formed in chromosomal sites. To test this hypothesis, the specificity of antibodies to triple-helical nucleic acids was reassessed employing distinct nucleic acid configurations. These antibodies were raised to the poly(dA).poly(rU).poly(rU) complex and have been used here for the first time in immunocytochemistry. Anti-triplex antibodies recognised the complex poly(dA).poly(rU).poly(rU) assembled with poly(rU) in poly(dA).poly(dT)-rich homopolymer regions of R. americana chromosomes. The antibodies could not detect short triplex stretches, suggesting the existence of constraints for triple-helix detection, probably related to triplex tract length. In addition, anti-poly(dA).poly(rU).poly(rU) antibodies reacted with the pericentric heterochromatin of RNase-treated polytene chromosomes of R. americana and Drosophila melanogaster. In apparent agreement with data obtained in cell types from other organisms, the results of this work suggest that significant triple-helix DNA extensions can be formed in pericentric regions of these species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies have reported that chronic supplementation with shark liver oil (SLO) improves immune response of lymphocyte, macrophage and neutrophil in animal models and humans. In a similar manner, exercise training also stimulates the immune system. However, we are not aware of any study about the association of exercise and SLO supplementation on immune response. Thus, our main goal was to investigate the effect of chronic supplementation with SLO on immune responses of exercise-trained rats. Male Wistar rats were divided into four groups: sedentary with no supplementation (SED, n = 20), sedentary with SLO supplementation (SEDslo, n = 20), exercised (EX, n = 17) and exercised supplemented with SLO (EXslo, n = 19). Rats swam for 6 weeks, 1.5 h/day, in water at 32 +/- A 1A degrees C, with a load of 6.0% body weight attached to the thorax of rat. Animals were killed 48 h after the last exercise session. SLO supplementation did not change phagocytosis, lysosomal volume, superoxide anion and hydrogen peroxide production by peritoneal macrophages and blood neutrophils. Thymus and spleen lymphocyte proliferation were significantly higher in SEDslo, EX, and EXslo groups compared with SED group (P < 0.05). Gut-associated lymphocyte proliferation, on the other hand, was similar between the four experimental groups. Our findings show that SLO and EX indeed are able to increase lymphocyte proliferation, but their association did not induce further stimulation in the adaptive immune response and also did not modify innate immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Invertebrates protect themselves against microbial infection through cellular and humoral immune defenses. Since the available information on the immune system of spiders is scarce, the main goat of the present study was to investigate the role of hemocytes and antimicrobial peptides (AMPs) in defense against microbes of spider Acanthoscurria gomesiana. We previously described the purification and characterization of two AMPs from the hemocytes of naive spider A. gomesiana, gomesin and acanthoscurrin. Here we show that 57% of the hemocytes store both gomesin and acanthoscurrin, either in the same or in different granules. Progomesin labeling in hemocyte granules indicates that gomesin is addressed to those organelles as a propeptide. In vivo and in vitro experiments showed that lipopolysaccharide (LPS) and yeast caused the hemocytes to migrate. Once they have reached the infection site, hemocytes may secrete coagulation cascade components and AMPs to cell-free hemolymph. Furthermore, our results suggest that phagocytosis is not the major defense mechanism activated after microbial challenge. Therefore, the main reactions involved in the spider immune defense might be coagulation and AMP secretion. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acute kidney injury (AKI) is an important clinical syndrome characterized by abnormalities in the hydroelectrolytic balance. Because of high rates of morbidity and mortality (from 15% to 60%) associated with AKI, the study of its pathophysiology is critical in searching for clinical targets and therapeutic strategies. Severe sepsis is the major cause of AKI. The host response to sepsis involves an inflammatory response, whereby the pathogen is initially sensed by innate immune receptors (pattern recognition receptors [PRRs]). When it persists, this immune response leads to secretion of proinflammatory products that induce organ dysfunction such as renal failure and consequently increased mortality. Moreover, the injured tissue releases molecules resulting from extracellular matrix degradation or dying cells that function as alarmines, which are recognized by PRR in the absence of pathogens in a second wave of injury. Toll-like receptors (TLRs) and NOD-like receptors (NLRs) are the best characterized PRRs. They are expressed in many cell types and throughout the nephron. Their activation leads to translocation of nuclear factors and synthesis of proinflammatory cytokines and chemokines. TLRs` signaling primes the cells for a robust inflammatory response dependent on NLRs; the interaction of TLRs and NLRs gives rise to the multiprotein complex known as the inflammasome, which in turn activates secretion of mature interleukin 1 beta and interleukin 18. Experimental data show that innate immune receptors, the inflammasome components, and proinflammatory cytokines play crucial roles not only in sepsis, but also in organ-induced dysfunction, especially in the kidneys. In this review, we discuss the significance of the innate immune receptors in the development of acute renal injury secondary to sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) present in innate immune cells recognize pathogen molecular patterns and influence immunity to control the host-parasite interaction. The objective of this study was to characterize the involvement of TLR4 in the innate and adaptive immunity to Paracoccidioides brasiliensis, the most important primary fungal pathogen of Latin America. We compared the responses of C3H/HeJ mice, which are naturally defective in TLR4 signaling, with those of C3H/HePas mice, which express functional receptors, after in vitro and in vivo infection with P. brasiliensis. Unexpectedly, we verified that TLR4-defective macrophages infected in vitro with P. brasiliensis presented decreased fungal loads associated with impaired synthesis of nitric oxide, interleukin-12 (IL-12), and macrophage chemotactic protein 1 (MCP-1). After intratracheal infection with 1 million yeasts, TLR4-defective mice developed reduced fungal burdens and decreased levels of pulmonary nitric oxide, proinflammatory cytokines, and antibodies. TLR4-competent mice produced elevated levels of IL-12 and tumor necrosis factor alpha (TNF-alpha), besides cytokines of the Th17 pattern, indicating a proinflammatory role for TLR4 signaling. The more severe infection of TLR4-normal mice resulted in increased influx of activated macrophages and T cells to the lungs and progressive control of fungal burdens but impaired expansion of regulatory T cells (Treg cells). In contrast, TLR4-defective mice were not able to clear their diminished fungal burdens totally, a defect associated with deficient activation of T-cell immunity and enhanced development of Treg cells. These divergent patterns of immunity, however, resulted in equivalent mortality rates, indicating that control of elevated fungal growth mediated by vigorous inflammatory reactions is as deleterious to the hosts as low fungal loads inefficiently controlled by limited inflammatory reactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms responsible for the generation and maintenance of immunological memory to Plasmodium are poorly understood and the reasons why protective immunity in humans is so difficult to achieve and rapidly lost remain a matter for debate. A possible explanation for the difficulty in building up an efficient immune response against this parasite is the massive T cell apoptosis resulting from exposure to high-dose parasite Ag. To determine the immunological mechanisms required for long-term protection against P. chabaudi malaria and the consequences of high and low acute phase parasite loads for acquisition of protective immunity, we performed a detailed analysis of T and B cell compartments over a period of 200 days following untreated and drug-treated infections in female C57BL/6 mice. By comparing several immunological parameters with the capacity to control a secondary parasite challenge, we concluded that loss of full protective immunity is not determined by acute phase parasite load nor by serum levels of specific IgG2a and IgG1. Abs, but appears to be a consequence of the progressive decline in memory T cell response to parasites, which occurs similarly in untreated and drug-treated mice with time after infection. Furthermore, by analyzing adoptive transfer experiments, we confirmed the major role of CD4(+) T cells for guaranteeing long-term full protection against P. chabaudi malaria. The Journal of Immunology, 2008, 181: 8344-8355.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent study, we demonstrated the immunogenic properties of a new malaria vaccine polypeptide based on a 19 kDa C-terminal fragment of the merozoite surface protein-1 (MSP1(19)) from Plasmodium vivax and an innate immunity agonist, the Salmonella enterica serovar Typhimurium flagellin (FliC). Herein, we tested whether the same strategy, based on the MSP1(19) component of the deadly malaria parasite Plasmodium falciparum, could also generate a fusion polypeptide with enhanced immunogenicity. The His(6)FliC-MSP1(19) fusion protein was expressed from a recombinant Escherichia coil and showed preserved in vitro TLR5-binding activity. In contrast to animals injected with His(6)MSP1(19), mice subcutaneously immunised with the recombinant His6FliC-MSP1(19) developed strong MSP1(19)-specific systemic antibody responses with a prevailing IgG1 subclass. Incorporation of other adjuvants, such as CpG ODN 1826, complete and incomplete Freund`s adjuvants or Quil-A, improved the IgG responses after the second, but not the third, immunising dose. It also resulted in a more balanced IgG subclass response, as evaluated by the IgG1/IgG2c ratio, and higher cell-mediated immune response, as determined by the detection of antigen-specific interferon-gamma secretion by immune spleen cells. MSP(19)-specific antibodies recognised not only the recombinant protein, but also the native protein expressed on the surface of P. falciparum parasites. Finally, sera from rabbits immunised with the fusion protein alone inhibited the in vitro growth of three different P. falciparum strains. In summary, these results extend our previous observations and further demonstrate that fusion of the innate immunity agonist FliC to Plasmodium antigens is a promising alternative to improve their immunogenicity. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Production of verocytotoxin or Shiga-like toxin (Stx), particularly Stx2, is the basis of hemolytic uremic syndrome, a frequently lethal outcome for subjects infected with Stx2-producing enterohemorrhagic Escherichia coli (EHEC) strains. The toxin is formed by a single A subunit, which promotes protein synthesis inhibition in eukaryotic cells, and five B subunits, which bind to globotriaosylceramide at the surface of host cells. Host enzymes cleave the A subunit into the A(1) peptide, endowed with N-glycosidase activity to the 28S rRNA, and the A(2) peptide, which confers stability to the B pentamer. We report the construction of a DNA vaccine (pStx2 Delta AB) that expresses a nontoxic Stx2 mutated form consisting of the last 32 amino acids of the A(2) sequence and the complete B subunit as two nonfused polypeptides. Immunization trials carried out with the DNA vaccine in BALB/c mice, alone or in combination with another DNA vaccine encoding granulocyte-macrophage colony-stimulating factor, resulted in systemic Stx-specific antibody responses targeting both A and B subunits of the native Stx2. Moreover, anti-Stx2 antibodies raised in mice immunized with pStx2 Delta AB showed toxin neutralization activity in vitro and, more importantly, conferred partial protection to Stx2 challenge in vivo. The present vector represents the second DNA vaccine so far reported to induce protective immunity to Stx2 and may contribute, either alone or in combination with other procedures, to the development of prophylactic or therapeutic interventions aiming to ameliorate EHEC infection-associated sequelae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kazal-type inhibitors play several important roles in invertebrates, such as anticoagulant, vasodilator and antimicrobial activities. Putative Kazal-type inhibitors were described in several insect transcriptomes. In this paper we characterized for the first time a Kazal unique domain trypsin inhibitor from the Aedes aegypti mosquito. Previously, analyses of sialotranscriptome of A. aegypti showed the potential presence of a Kazal-type serine protease inhibitor, in female salivary glands, carcass and also in whole male, which we named AaTI (A. aegypti trypsin inhibitor). AaTI sequence showed amino acid sequence similarity with insect thrombin inhibitors, serine protease inhibitor from Litopenaeus vannamei hemocytes and tryptase inhibitor from leech Hirudo medicinalis (LDTI). In this work we expressed, purified and characterized the recombinant AaTI (rAaTI). Molecular weight of purified rAaTI was 7 kDa rAaTI presented dissociation constant (K(i)) of 0.15 and 3.8 nM toward trypsin and plasmin, respectively, and it weakly inhibited thrombin amidolytic activity. The rAaTI was also able to prolong prothrombin time, activated partial thromboplastin time and thrombin time. AaTI transcription was confirmed in A. aegypti female salivary gland and gut 3 h and 24 h after blood feeding, suggesting that this molecule can act as anticoagulant during the feeding and digestive processes. Its transcription in larvae and pupae suggested that AaTI may also play other functions during the mosquito`s development. (C) 2010 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Innate immunity is based in pre-existing elements of the immune system that directly interact with all types of microbes leading to their destruction or growth inhibition. Several elements of this early defense mechanism act in concert to control initial pathogen growth and have profound effect on the adaptative immune response that further develops. Although most studies in paracoccidioidomycosis have been dedicated to understand cellular and humoral immune responses, innate immunity remains poorly defined. Hence, the main purpose of this review is to present and discuss some mechanisms of innate immunity developed by resistant and susceptible mice to Paracoccidioides brasiliensis infection, trying to understand how this initial host-pathogen interface interferes with the protective or deleterious adaptative immune response that will dictate disease outcome. An analysis of some mechanisms and mediators of innate immunity such as the activation of complement proteins, the microbicidal activity of natural killer cells and phagocytes, the production of inflammatory eicosanoids, cytokines, and chemokines among others, is presented trying to show the important role played by innate immunity in the host response to P. brasiliensis infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mycobacterium bovis Bacillus Calmette-Guerin (BCG) has been shown to down-regulate experimental allergic asthma, a finding that reinforced the hygiene hypothesis. We have previously found that recombinant BCG (rBCG) strain that express the genetically detoxified Si subunit of pertussis toxin (rBCG-S1PT) exerts an adjuvant effect that enhances Th1 responses against BCG proteins. Here we investigated the effect of this rBCG-S1PT on the classical ovalbumin-induced mouse model of allergic lung disease. We found that rBCG-S1PT was more effective than wild-type BCG in preventing Th2-mediated allergic immune responses. The inhibition of allergic lung disease was not associated with increased concentration of suppressive cytokines or with an increased number of pulmonary regulatory T cells but was positively correlated with the increase in IFN-gamma-producing T cells and T-bet expression in the lung. In addition, an IL-12-dependent mechanism appeared to be important to the inhibition of lung allergic disease. The inhibition of allergic inflammation was found to be restricted to the lung because when allergen challenge was given by the intraperitoneal route, rBCG-S1PT administration failed to inhibit peritoneal allergic inflammation and type 2 cytokine production. Our work offers a nonclassical interpretation for the hygiene hypothesis indicating that attenuation of lung allergy by rBCG could be due to the enhancement of local lung Th1 immunity induced by rBCG-S1PT. Moreover, it highlights the possible use of rBCG strains as multipurpose immunomodulators by inducing specific immunity against microbial products while protecting against allergic asthma.