907 resultados para DIFFUSION-CONTROLLED GROWTH
Resumo:
Diffusion tensor imaging (DTI) and immunohistochemistry were performed in spinal cord injured rats to understand the basis for activation of multiple regions in the brain observed in functional magnetic resonance imaging (fMRI) studies. The measured fractional anisotropy (FA), a scalar measure of diffusion anisotropy, along the region encompassing corticospinal tracts (CST) indicates significant differences between control and injured groups in the 3 to 4 mm area posterior to bregma that correspond to internal capsule and cerebral peduncle. Additionally, DTI-based tractography in injured animals showed increased number of fibers that extend towards the cortex terminating in the regions that were activated in fMRI. Both the internal capsule and cerebral peduncle demonstrated an increase in GFAP-immunoreactivity compared to control animals. GAP-43 expression also indicates plasticity in the internal capsule. These studies suggest that the previously observed multiple regions of activation in spinal cord injury are, at least in part, due to the formation of new fibers.
Resumo:
BACKGROUND: Whole-body hypothermia reduced the frequency of death or moderate/severe disabilities in neonates with hypoxic-ischemic encephalopathy in a randomized, controlled multicenter trial. OBJECTIVE: Our goal was to evaluate outcomes of safety and effectiveness of hypothermia in infants up to 18 to 22 months of age. DESIGN/METHODS: A priori outcomes were evaluated between hypothermia (n = 102) and control (n = 106) groups. RESULTS: Encephalopathy attributable to causes other than hypoxia-ischemia at birth was not noted. Inotropic support (hypothermia, 59% of infants; control, 56% of infants) was similar during the 72-hour study intervention period in both groups. Need for blood transfusions (hypothermia, 24%; control, 24%), platelet transfusions (hypothermia, 20%; control, 12%), and volume expanders (hypothermia, 54%; control, 49%) was similar in the 2 groups. Among infants with persistent pulmonary hypertension (hypothermia, 25%; control, 22%), nitric-oxide use (hypothermia, 68%; control, 57%) and placement on extracorporeal membrane oxygenation (hypothermia, 4%; control, 9%) was similar between the 2 groups. Non-central nervous system organ dysfunctions occurred with similar frequency in the hypothermia (74%) and control (73%) groups. Rehospitalization occurred among 27% of the infants in the hypothermia group and 42% of infants in the control group. At 18 months, the hypothermia group had 24 deaths, 19 severe disabilities, and 2 moderate disabilities, whereas the control group had 38 deaths, 25 severe disabilities, and 1 moderate disability. Growth parameters were similar between survivors. No adverse outcomes were noted among infants receiving hypothermia with transient reduction of temperature below a target of 33.5 degrees C at initiation of cooling. There was a trend in reduction of frequency of all outcomes in the hypothermia group compared with the control group in both moderate and severe encephalopathy categories. CONCLUSIONS: Although not powered to test these secondary outcomes, whole-body hypothermia in infants with encephalopathy was safe and was associated with a consistent trend for decreasing frequency of each of the components of disability.
Resumo:
Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^
Resumo:
BACKGROUND: Reproducibility of basic research investigations in homeopathy is challenging. This study investigated if formerly observed effects of homeopathically potentised gibberellic acid (GA3) on growth of duckweed (Lemna gibba L.) were reproducible. METHODS: Duckweed was grown in potencies (14x-30x) of GA3 and one time succussed and unsuccussed water controls. Outcome parameter area-related growth rate was determined by a computerised image analysis system. Three series including five independent blinded and randomised potency experiments (PE) each were carried out. System stability was controlled by three series of five systematic negative control (SNC) experiments. Gibbosity (a specific growth state of L. gibba) was investigated as possibly essential factor for reactivity of L. gibba towards potentised GA3 in one series of potency and SNC experiments, respectively. RESULTS: Only in the third series with gibbous L. gibba L. we observed a significant effect (p = 0.009, F-test) of the homeopathic treatment. However, growth rate increased in contrast to the former study, and most biologically active potency levels differed. Variability in PE was lower than in SNC experiments. The stability of the experimental system was verified by the SNC experiments. CONCLUSIONS: Gibbosity seems to be a necessary condition for reactivity of L. gibba to potentised GA3. Further still unknown conditions seem to govern effect direction and the pattern of active and inactive potency levels. When designing new reproducibility studies, the physiological state of the test organism must be considered. Variability might be an interesting parameter to investigate effects of homeopathic remedies in basic research.
Resumo:
To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.
Resumo:
To study the effects of temperature, salinity, and life processes (growth rates, size, metabolic effects, and physiological/ genetic effects) on newly precipitated bivalve carbonate, we quantified shell isotopic chemistry of adult and juvenile animals of the intertidal bivalve Mytilus edulis (Blue mussel) collected alive from western Greenland and the central Gulf of Maine and cultured them under controlled conditions. Data for juvenile and adult M. edulis bivalves cultured in this study, and previously by Wanamaker et al. (2006), yielded statistically identical paleotemperature relationships. On the basis of these experiments we have developed a species-specific paleotemperature equation for the bivalve M. edulis [T degrees C = 16.28 (+/- 0.10) -4.57 (+/- 0.15) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW} + 0.06 (+/- 0.06) {delta(18)O(c) VPBD - delta(18)O(w) VSMOW}(2); r(2) = 0.99; N = 323; p < 0.0001]. Compared to the Kim and O'Neil (1997) inorganic calcite equation, M. edulis deposits its shell in isotope equilibrium (delta(18)O(calcite)) with ambient water. Carbon isotopes (delta(13)C(calcite)) from sampled shells were substantially more negative than predicted values, indicating an uptake of metabolic carbon into shell carbonate, and delta(13)C(calcite) disequilibrium increased with increasing salinity. Sampled shells of M. edulis showed no significant trends in delta(18)O(calcite) based on size, cultured growth rates, or geographic collection location, suggesting that vital effects do not affect delta(18)O(calcite) in M. edulis. The broad modern and paleogeographic distribution of this bivalve, its abundance during the Holocene, and the lack of an intraspecies physiologic isotope effect demonstrated here make it an ideal nearshore paleoceanographic proxy throughout much of the North Atlantic Ocean.
Resumo:
Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.
Resumo:
K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, on which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains”. Heterochemical phases also play an important role in producing non-linear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the "diffusion domain" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution amongst different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar-39Ar hygrochronology as it is for U-Pb geochronology.
Resumo:
OBJECTIVES To evaluate the effect of biannual fluoride varnish applications in preschool children as an adjunct to school-based oral health promotion and supervised tooth brushing with 1000ppm fluoride toothpaste. METHODS 424 preschool children, 2-5 year of age, from 10 different pre schools in Athens were invited to this double-blind randomized controlled trial and 328 children completed the 2-year programme. All children received oral health education with hygiene instructions twice yearly and attended supervised tooth brushing once daily. The test group was treated with fluoride varnish (0.9% diflurosilane) biannually while the control group had placebo applications. The primary endpoints were caries prevalence and increment; secondary outcomes were gingival health, mutans streptococci growth and salivary buffer capacity. RESULTS The groups were balanced at baseline and no significant differences in caries prevalence or increment were displayed between the groups after 1 and 2 years, respectively. There was a reduced number of new pre-cavitated enamel lesions during the second year of the study (p=0.05) but the decrease was not statistically significant. The secondary endpoints were unaffected by the varnish treatments. CONCLUSIONS Under the present conditions, biannual fluoride varnish applications in preschool children did not show significant caries-preventive benefits when provided as an adjunct to school-based supervised tooth brushing with 1000ppm fluoride toothpaste. CLINICAL SIGNIFICANCE In community based, caries prevention programmes, for high caries risk preschool children, a fluoride varnish may add little to caries prevention, when 1000ppm fluoride toothpaste is used daily.
Resumo:
Oxygen diffusion plays an important role in grain growth and densification during the sintering of alumina ceramics and governs high-temperature processes such as creep. The atomistic mechanism for oxygen diffusion in alumina is, however, still debated; atomistic calculations not being able to match experimentally determined activation energies for oxygen vacancy diffusion. These calculations are, however, usually performed for perfectly pure crystals, whereas virtually every experimental alumina sample contains a significant fraction of impurity/dopants ions. In this study, we use atomistic defect cluster and nudged elastic band (NEB) calculations to model the effect of Mg impurities/dopants on defect binding energies and migration barriers. We find that oxygen vacancies can form energetically favorable clusters with Mg, which reduces the number of mobile species and leads to an additional 1.5 eV energy barrier for the detachment of a single vacancy from Mg. The migration barriers of diffusive jumps change such that an enhanced concentration of oxygen vacancies is expected around Mg ions. Mg impurities were also found to cause destabilization of certain vacancy configurations as well as enhanced vacancy–vacancy interaction.
Resumo:
AIM The aim was to elucidate whether essential hypertension is associated with altered capillary morphology and density and to what extent exercise training can normalize these parameters. METHODS To investigate angiogenesis and capillary morphology in essential hypertension, muscle biopsies were obtained from m. vastus lateralis in subjects with essential hypertension (n = 10) and normotensive controls (n = 11) before and after 8 weeks of aerobic exercise training. Morphometry was performed after transmission electron microscopy, and protein levels of several angioregulatory factors were determined. RESULTS At baseline, capillary density and capillary-to-fibre ratio were not different between the two groups. However, the hypertensive subjects had 9% lower capillary area (12.7 ± 0.4 vs. 13.9 ± 0.2 μm(2)) and tended to have thicker capillary basement membranes (399 ± 16 vs. 358 ± 13 nm; P = 0.094) than controls. Protein expression of vascular endothelial growth factor (VEGF), VEGF receptor-2 and thrombospondin-1 were similar in normotensive and hypertensive subjects, but tissue inhibitor of matrix metalloproteinase was 69% lower in the hypertensive group. After training, angiogenesis was evident by 15% increased capillary-to-fibre ratio in the hypertensive subjects only. Capillary area and capillary lumen area were increased by 7 and 15% in the hypertensive patients, whereas capillary basement membrane thickness was decreased by 17% (P < 0.05). VEGF expression after training was increased in both groups, whereas VEGF receptor-2 was decreased by 25% in the hypertensive patients(P < 0.05). CONCLUSION Essential hypertension is associated with decreased lumen area and a tendency for increased basement membrane thickening in capillaries of skeletal muscle. Exercise training may improve the diffusion conditions in essential hypertension by altering capillary structure and capillary number.
Resumo:
PURPOSE The aim of this work was to study the peri-implant soft tissues response, by evaluating both the recession and the papilla indexes, of patients treated with implants with two different configurations. In addition, data were stratified by tooth category, smoking habit and thickness of buccal bone wall. MATERIALS AND METHODS The clinical trial was designed as a prospective, randomized-controlled multicenter study. Adults in need of one or more implants replacing teeth to be removed in the maxilla within the region 15-25 were recruited. Following tooth extraction, the site was randomly allocated to receive either a cylindrical or conical/cylindrical implant. The following parameters were studied: (i) Soft tissue recession (REC) measured by comparing the gingival zenith (GZ) score at baseline (permanent restoration) with that of the yearly follow-up visits over a period of 3 years (V1, V2 and V3). (ii) Interdental Papilla Index (PI): PI measurements were performed at baseline and compared with that of the follow-up visits. In addition, data were stratified by different variables: tooth category: anterior (incisors and canine) and posterior (first and second premolar); smoking habit: patient smoker (habitual or occasional smoker at inclusion) or non-smoker (non-smoker or ex-smoker at inclusion) and thickness of buccal bone wall (TB): TB ≤ 1 mm (thin buccal wall) or TB > 1 mm (thick buccal wall). RESULTS A total of 93 patients were treated with 93 implants. At the surgical re-entry one implant was mobile and then removed; moreover, one patient was lost to follow-up. Ninety-one patients were restored with 91 implant-supported permanent single crowns. After the 3-year follow-up, a mean gain of 0.23 mm of GZ was measured; moreover, 79% and 72% of mesial and distal papillae were classified as >50%/ complete, respectively. From the stratification analysis, not significant differences were found between the mean GZ scores of implants with TB ≤ 1 mm (thin buccal wall) and TB > 1 mm (thick buccal wall), respectively (P < 0.05, Mann-Whitney U-test) at baseline, at V1, V2 and V3 follow-up visits. Also, the other variables did not seem to influence GZ changes over the follow-up period. Moreover, a re-growth of the interproximal mesial and distal papillae was the general trend observed independently from the variables studied. CONCLUSIONS Immediate single implant treatment may be considered a predictable option regarding soft tissue stability over a period of 3 years of follow-up. An overall buccal soft tissue stability was observed during the GZ changes from the baseline to the 3 years of follow-up with a mean GZ reduction of 0.23 mm. A nearly full papillary re-growth can be detectable over a minimum period of 2 years of follow-up for both cylindrical and conical/cylindrical implants. Both the interproximal papilla filling and the midfacial mucosa stability were not influenced by variables such as type of fixture configuration, tooth category, smoke habit, and thickness of buccal bone wall of ≤ 1 mm (thin buccal wall).
Resumo:
Cochlear implants are neuroprostheses that are inserted into the inner ear to directly electrically stimulate the auditory nerve, thus replacing lost cochlear receptors, the hair cells. The reduction of the gap between electrodes and nerve cells will contribute to technological solutions simultaneously increasing the frequency resolution, the sound quality and the amplification of the signal. Recent findings indicate that neurotrophins (NTs) such as brain derived neurotrophic factor (BDNF) stimulate the neurite outgrowth of auditory nerve cells by activating Trk receptors on the cellular surface (1–3). Furthermore, small-size TrkB receptor agonists such as di-hydroxyflavone (DHF) are now available, which activate the TrkB receptor with similar efficiency as BDNF, but are much more stable (4). Experimentally, such molecules are currently used to attract nerve cells towards, for example, the electrodes of cochlear implants. This paper analyses the scenarios of low dose aspects of controlled release of small-size Trk receptor agonists from the coated CI electrode array into the inner ear. The control must first ensure a sufficient dose for the onset of neurite growth. Secondly, a gradient in concentration needs to be maintained to allow directive growth of neurites through the perilymph-filled gap towards the electrodes of the implant. We used fluorescein as a test molecule for its molecular size similarity to DHF and investigated two different transport mechanisms of drug dispensing, which both have the potential to fulfil controlled low-throughput drug-deliverable requirements. The first is based on the release of aqueous fluorescein into water through well-defined 60-μm size holes arrays in a membrane by pure osmosis. The release was both simulated using the software COMSOL and observed experimentally. In the second approach, solid fluorescein crystals were encapsulated in a thin layer of parylene (PPX), hence creating random nanometer-sized pinholes. In this approach, the release occurred due to subsequent water diffusion through the pinholes, dissolution of the fluorescein and then release by out-diffusion. Surprisingly, the release rate of solid fluorescein through the nanoscopic scale holes was found to be in the same order of magnitude as for liquid fluorescein release through microscopic holes.
Resumo:
The aim of this work was to study the role of the cell wall protein expansin in elongation growth. Expansins increase cell wall extensibility in vitro and are thought to be involved in cell elongation. Here, we studied the regulation of two tomato (Lycopersicon esculentum cv Moneymaker) expansin genes,LeExp2 and LeExp18, in rapidly expanding tissues. LeExp2 was strongly expressed in the elongation zone of hypocotyls and in the faster growing stem part during gravitropic stimulation. LeExp18 expression did not correlate with elongation growth. Exogenous application of hormones showed a substantial auxin-stimulation of LeExp2 mRNA in etiolated hypocotyls and a weaker auxin-stimulation ofLeExp18 mRNA in stem tissue. Analysis of transcript accumulation revealed higher levels of LeExp2 andLeExp18 in light-treated, slow-growing tissue than in dark-treated, rapidly elongating tissue. Expansin protein levels and cell wall extension activities were similar in light- and dark-grown hypocotyl extracts. The results show a strong correlation between expansin gene expression and growth rate, but this correlation is not absolute. We conclude that elongation growth is likely to be controlled by expansin acting in concert with other factors that may limit growth under some physiological conditions.
Resumo:
Recent studies on the history of economic development demonstrate that concentration of power on a monarch or a ruling coalition impedes economic growth and that institutional changes that diffuse power, though beneficial to the society in general, are opposed by some social groups. In November 2005, Kenyans rejected a proposed constitution primarily because it did not reduce the powers of the executive to any significant degree. Using data of voting patterns in the constitutional referendum and following the rational choice framework, I estimate a model of the demand for power diffusion and demonstrate that groups voting decisions depend on expected gains and likelihood of monopolizing power. The results also reveal the importance of ethnic divisions in hindering the power diffusion process, and therefore the study establishes a channel through which ethnic fragmentation impacts on economic development.