893 resultados para DDoS attack
Resumo:
Forecasting the ecological impacts of invasive species is a major challenge that has seen little progress, yet the development of robust predictive approaches is essential as new invasion threats continue to emerge. A common feature of ecologically damaging invaders is their ability to rapidly exploit and deplete resources. We thus hypothesized that the 'functional response' (the relationship between resource density and consumption rate) of such invasive species might be of consistently greater magnitude than those of taxonomically and/or trophically similar native species. Here, we derived functional responses of the predatory Ponto-Caspian freshwater 'bloody red' shrimp, Hemimysis anomala, a recent and ecologically damaging invader in Europe and N. America, in comparison to the local native analogues Mysis salemaai and Mysis diluviana in Ireland and Canada, respectively. This was conducted in a novel set of experiments involving multiple prey species in each geographic location and a prey species that occurs in both regions. The predatory functional responses of the invader were generally higher than those of the comparator native species and this difference was consistent across invaded regions. Moreover, those prey species characterized by the strongest and potentially de-stabilizing Type II functional responses in our laboratory experiments were the same prey species found to be most impacted by H. anomala in the field. The impact potential of H. anomala was further indicated when it exhibited similar or higher attack rates, consistently lower prey handling times and higher maximum feeding rates compared to those of the two Mysis species, formerly known as 'Mysis relicta', which itself has an extensive history of foodweb disruption in lakes to which it has been introduced. Comparative functional responses thus merit further exploration as a methodology for predicting severe community-level impacts of current and future invasive species and could be entered into risk assessment protocols.
Resumo:
Bdellovibrio bacteriovorus is a Gram-negative bacterium that preys on other Gram-negative bacteria. The lifecycle of B. bacteriovorus alternates between an extracellular flagellated and highly motile non-replicative attack-phase cell and a periplasmic non-flagellated growth-phase cell. The prey bacterium containing periplasmic bdellovibrios becomes spherical but osmotically stable, forming a structure known as the bdelloplast. After completing the growth phase, newly formed bdellovibrios regain their flagellum and escape the bdelloplast into the environment, where they encounter more prey bacteria. The obligate predatory nature of B. bacteriovorus imposes a major difficulty to introducing mutations in genes directly involved in predation, since these mutants could be non-viable. This work reports the cloning of the B. bacteriovorus 109J motAB operon, encoding proteins from the flagellar motor complex, and a genetic approach based on the expression of a motA antisense RNA fragment to downregulate motility. Periplasmic bdellovibrios carrying the plasmid expressing antisense RNA displayed a marked delay in escaping from bdelloplasts, while the released attack-phase cells showed altered motility. These observations suggest that a functionally intact flagellar motor is required for the predatory lifecycle of B. bacteriovorus. Also, the use of antisense RNA expression may be a useful genetic tool to study the Bdellovibrio developmental cycle.
Resumo:
A new model to explain animal spacing, based on a trade-off between foraging efficiency and predation risk, is derived from biological principles. The model is able to explain not only the general tendency for animal groups to form, but some of the attributes of real groups. These include the independence of mean animal spacing from group population, the observed variation of animal spacing with resource availability and also with the probability of predation, and the decline in group stability with group size. The appearance of "neutral zones" within which animals are not motivated to adjust their relative positions is also explained. The model assumes that animals try to minimize a cost potential combining the loss of intake rate due to foraging interference and the risk from exposure to predators. The cost potential describes a hypothetical field giving rise to apparent attractive and repulsive forces between animals. Biologically based functions are given for the decline in interference cost and increase in the cost of predation risk with increasing animal separation. Predation risk is calculated from the probabilities of predator attack and predator detection as they vary with distance. Using example functions for these probabilities and foraging interference, we calculate the minimum cost potential for regular lattice arrangements of animals before generalizing to finite-sized groups and random arrangements of animals, showing optimal geometries in each case and describing how potentials vary with animal spacing. (C) 1999 Academic Press.</p>
Resumo:
This essay examines the relationship between two 'fake' editions of Shakespeare that appeared in the mid-nineteenth century: the so-called 'Perkins Folio', whose annotations were forged by the scholar J.P. Collier, and the 'Grimaldi Shakspeare', a satiric attack upon the spurious authenticity and authority of the Perkins Folio.
Resumo:
This paper introduces the discrete choice model-paradigm of Random Regret Minimisation (RRM) to the field of health economics. The RRM is a regret-based model that explores a driver of choice different from the traditional utility-based Random Utility Maximisation (RUM). The RRM approach is based on the idea that, when choosing, individuals aim to minimise their regret–regret being defined as what one experiences when a non-chosen alternative in a choice set performs better than a chosen one in relation to one or more attributes. Analysing data from a discrete choice experiment on diet, physical activity and risk of a fatal heart attack in the next ten years administered to a sample of the Northern Ireland population, we find that the combined use of RUM and RRM models offer additional information, providing useful behavioural insights for better informed policy appraisal.
Resumo:
Security devices are vulnerable to Differential Power Analysis (DPA) that reveals the key by monitoring the power consumption of the circuits. In this paper, we present the first DPA attack against an FPGA implementation of the Camellia encryption algorithm with all key sizes and evaluate the DPA resistance of the algorithm. The Camellia cryptographic algorithm involves several different key-dependent intermediate operations including S-Box operations. In previous research, it was believed that the Camellia is stronger than AES due to the additional Whitening phase protecting the S-Box operation. However, we propose an attack that bypasses the Whitening phase and targets the S-Box. In this paper, we also discuss a lowcost countermeasure strategy to protect the Pre-whitening / Post-whitening and FL function of Camellia using Dual-rail Precharged Logic and to protect against attacks of the S-Box using Random Delay Insertion. © 2009 IEEE.
Resumo:
Architects use cycle-by-cycle simulation to evaluate design choices and understand tradeoffs and interactions among design parameters. Efficiently exploring exponential-size design spaces with many interacting parameters remains an open problem: the sheer number of experiments renders detailed simulation intractable. We attack this problem via an automated approach that builds accurate, confident predictive design-space models. We simulate sampled points, using the results to teach our models the function describing relationships among design parameters. The models produce highly accurate performance estimates for other points in the space, can be queried to predict performance impacts of architectural changes, and are very fast compared to simulation, enabling efficient discovery of tradeoffs among parameters in different regions. We validate our approach via sensitivity studies on memory hierarchy and CPU design spaces: our models generally predict IPC with only 1-2% error and reduce required simulation by two orders of magnitude. We also show the efficacy of our technique for exploring chip multiprocessor (CMP) design spaces: when trained on a 1% sample drawn from a CMP design space with 250K points and up to 55x performance swings among different system configurations, our models predict performance with only 4-5% error on average. Our approach combines with techniques to reduce time per simulation, achieving net time savings of three-four orders of magnitude. Copyright © 2006 ACM.
Resumo:
In hypersonic flight, the prediction of aerodynamic heating and the construction of a proper thermal protection system (TPS) are significantly important. In this study, the method of a film cooling technique, which is already the state of the art in cooling of gas turbine engines, is proposed for a fully reusable and active TPS. Effectiveness of the film cooling scheme to reduce convective heating rates for a blunt-nosed spacecraft flying at Mach number 6.56 and 40 deg angle of attack is investigated numerically. The inflow boundary conditions used the standard values at an altitude of 30 km. The computational domain consists of infinite rows of film cooling holes on the bottom of a blunt-nosed slab. Laminar and several turbulent calculations have been performed and compared. The influence of blowing ratios on the film cooling effectiveness is investigated. The results exhibit that the film cooling technique could be an effective method for an active cooling of blunt-nosed bodies in hypersonic flows.
Resumo:
Efficiently exploring exponential-size architectural design spaces with many interacting parameters remains an open problem: the sheer number of experiments required renders detailed simulation intractable.We attack this via an automated approach that builds accurate predictive models. We simulate sampled points, using results to teach our models the function describing relationships among design parameters. The models can be queried and are very fast, enabling efficient design tradeoff discovery. We validate our approach via two uniprocessor sensitivity studies, predicting IPC with only 1–2% error. In an experimental study using the approach, training on 1% of a 250-K-point CMP design space allows our models to predict performance with only 4–5% error. Our predictive modeling combines well with techniques that reduce the time taken by each simulation experiment, achieving net time savings of three-four orders of magnitude.
Resumo:
The Intrusion Detection System (IDS) is a common means of protecting networked systems from attack or malicious misuse. The deployment of an IDS can take many different forms dependent on protocols, usage and cost. This is particularly true of Wireless Intrusion Detection Systems (WIDS) which have many detection challenges associated with data transmission through an open, shared medium, facilitated by fundamental changes at the Physical and MAC layers. WIDS need to be considered in more detail at these lower layers than their wired counterparts as they face unique challenges. The remainder of this chapter will investigate three of these challenges where WiFi deviates significantly from that of wired counterparts:
• Attacks Specific to WiFi Networks: Outlining the additional threats which WIDS must account for: Denial of Service, Encryption Bypass and AP Masquerading attacks.
• The Effect of Deployment Architecture on WIDS Performance: Demonstrating that the deployment environment of a network protected by a WIDS can influence the prioritisation of attacks.
• The Importance of Live Data in WiFi Research: Investigating the different choices for research data sources with an emphasis on encouraging live network data collection for future WiFi research.
Resumo:
The IDS (Intrusion Detection System) is a common means of protecting networked systems from attack or malicious misuse. The development and rollout of an IDS can take many different forms in terms of equipment, protocols, connectivity, cost and automation. This is particularly true of WIDS (Wireless Intrusion Detection Systems) which have many more opportunities and challenges associated with data transmission through an open, shared medium.
The operation of a WIDS is a multistep process from origination of an attack through to human readable evaluation. Attention to the performance of each of the processes in the chain from attack detection to evaluation is imperative if an optimum solution is to be sought. At present, research focuses very much on each discrete aspect of a WIDS with little consideration to the operation of the whole system. Taking a holistic view of the technology shows the interconnectivity and inter-dependence between stages, leading to improvements and novel research areas for investigation.
This chapter will outline the general structure of Wireless Intrusion Detection Systems and briefly describe the functions of each development stage, categorised into the following 6 areas:
• Threat Identification,
• Architecture,
• Data Collection,
• Intrusion Detection,
• Alert Correlation,
• Evaluation.
These topics will be considered in broad terms designed for those new to the area. Focus will be placed on ensuring the readers are aware of the impact of choices made at early stages in WIDS development on future stages.
Resumo:
PURPOSE: To report a case of malignant glaucoma after diode laser cyclophotocoagulation. METHOD: Case report. RESULTS: A 45-year-old man with uncontrolled secondary glaucoma in his right eye after corneoscleral graft and cataract extraction underwent diode laser cyclophotocoagulation. The right eye was aphakic, with an intact posterior capsule. Two weeks later, the patient presented with blurred vision, edematous cornea, and flat anterior chamber. The posterior capsule was touching the endothelium. Intraocular pressure was 20 mm Hg. Repeated Nd:YAG laser capsulotomy was effective in reversing the malignant glaucoma attack, and the anterior chamber deepened. CONCLUSION: Malignant glaucoma can occur after diode laser cyclophotocoagulation.
Resumo:
This article offers a sustained examination of how the vicissitudes of the Cold War shaped changing interpretations of the Spanish Civil War in Britain. Considering the perspectives of participants and historians, it focuses on the diverse strands of the Left that frequently drew on the civil war to attack each other and to make wider arguments about the global Cold War. First, with the aim of criticizing Communist take-overs in Eastern Europe in the late 1940s, the article analyzes retrospective assaults on Communist party tactics and Soviet foreign policy in Spain. Second, in order to argue that the Soviet Union took a counter-revolutionary line after 1956, it investigates the re-emergence of debates over the Spanish revolution. Third, to express disapproval of the United States, it examines the increasing use of the civil war as an analogy in Cold War international affairs from the 1960s. Fourth, in support of non-Soviet Left-of-Centre collaboration, most notably Eurocommunism in the 1970s and opposition to Margaret Thatcher’s Conservative government in the 1980s, it considers the renewed emphasis on the popular front. The trajectories of these debates reveal that, over time, the weight of the Left’s criticism moved from the Soviet Union towards the United States.
Resumo:
Recently, two fast selective encryption methods for context-adaptive variable length coding and context-adaptive binary arithmetic coding in H.264/AVC were proposed by Shahid et al. In this paper, it was demonstrated that these two methods are not as efficient as only encrypting the sign bits of nonzero coefficients. Experimental results showed that without encrypting the sign bits of nonzero coefficients, these two methods can not provide a perceptual scrambling effect. If a much stronger scrambling effect is required, intra prediction modes, and the sign bits of motion vectors can be encrypted together with the sign bits of nonzero coefficients. For practical applications, the required encryption scheme should be customized according to a user's specified requirement on the perceptual scrambling effect and the computational cost. Thus, a tunable encryption scheme combining these three methods is proposed for H.264/AVC. To simplify its implementation and reduce the computational cost, a simple control mechanism is proposed to adjust the control factors. Experimental results show that this scheme can provide different scrambling levels by adjusting three control factors with no or very little impact on the compression performance. The proposed scheme can run in real-time and its computational cost is minimal. The security of the proposed scheme is also discussed. It is secure against the replacement attack when all three control factors are set to one.
Resumo:
The GHMP kinases are a structurally related family of small molecule kinases named after four of its members - galactokinase, homoserine kinase, mevalonate kinase and phosphomevalonate kinase. The group also includes the enzymes N-acetylgalactosamine kinase, arabinose kinase, mevalonate 5-diphosphate decarboxylase, archeal shikimate kinase and 4-(cytidine 5'-diphospho)-2-c-methyl-D-erythritol kinase. In addition the group includes two members not known to be catalytically active, the Caenorhabditis elegans sex-fate determining protein XOL-1 and the Saccharomyces cerevisiae transcriptional activator Gal3p. Two catalytic mechanisms have been proposed for GHMP kinases. The structure of mevalonate kinase suggests that an aspartate residue acts as an active site base, removing a proton from the substrate to facilitate attack on the ? phosphate of MgATP. In contrast, in homoserine kinase there is no potential catalytic base and it is proposed that catalysis is driven by transition state stabilisation. Potential chemotherapeutic interventions against GHMP kinases fall into three main categories: inhibition of galactokinase to assist suffers of galactosemia, inhibition of mevalonate kinase or mevalonate 5-diphosphate decarboxylase to reduce flux through the cholesterol biosynthesis pathway and inhibition of bacterial GHMP kinases for novel anti-microbial therapies. These are in the early stages of development, but the accumulation of structural and mechanistic data will assist future progress.