922 resultados para Coral reef biology
Resumo:
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.
Resumo:
Ocean warming and acidification are serious threats to marine life. While each stressor alone has been studied in detail, their combined effects on the outcome of ecological interactions are poorly understood. We measured predation rates and predator selectivity of two closely related species of damselfish exposed to a predatory dottyback. We found temperature and CO2 interacted synergistically on overall predation rate, but antagonistically on predator selectivity. Notably, elevated CO2 or temperature alone reversed predator selectivity, but the interaction between the two stressors cancelled selectivity. Routine metabolic rates of the two prey showed strong species differences in tolerance to CO2 and not temperature, but these differences did not correlate with recorded mortality. This highlights the difficulty of linking species-level physiological tolerance to resulting ecological outcomes. This study is the first to document both synergistic and antagonistic effects of elevated CO2 and temperature on a crucial ecological process like predator-prey dynamics.
Resumo:
Acknowledgements The authors acknowledge L. Wicks and B. de Francisco for helping in coral sampling and coral care in the aquaria facilities at SAMS. Thanks to C. Campbell and the CCAP for kind support and help. Scientific party and crew on board the RVs Calanus and Seol Mara, as well as on board the RRS James Cook during the Changing Oceans cruise (JC_073) are greatly acknowledged. Thanks to colleagues at SAMS for their support during our stay at SAMS. We are in debt with A. Olariaga for his help modifying the cylindrical experimental chambers used in the experiments, and C.C. Suckling for assistance with the flume experiment. Many thanks go to G. Kazadinis for preparing the POM used in the feeding experiments. We also thank two anonymous reviewers and the editor for their constructive comments, which contribute to improve the manuscript. This work has been supported by the European Commission through two ASSEMBLE projects (grant agreement no. 227799) conducted in 2010 and 2011 at SAMS, as well as by the UK Ocean Acidification Research Programme's Benthic Consortium project (awards NE/H01747X/1 and NE/H017305/1) funded by NERC. [SS]
Resumo:
Coral reefs, with their millions of species, have changed profoundly because of the effects of people, and will continue to do so for the foreseeable future. Reefs are subject to many of the same processes that affect other human-dominated ecosystems, but some special features merit emphasis: (i) Many dominant reef builders spawn eggs and sperm into the water column, where fertilization occurs. They are thus particularly vulnerable to Allee effects, including potential extinction associated with chronic reproductive failure. (ii) The corals likely to be most resistant to the effects of habitat degradation are small, short-lived “weedy” corals that have limited dispersal capabilities at the larval stage. Habitat degradation, together with habitat fragmentation, will therefore lead to the establishment of genetically isolated clusters of inbreeding corals. (iii) Increases in average sea temperatures by as little as 1°C, a likely result of global climate change, can cause coral “bleaching” (the breakdown of coral–algal symbiosis), changes in symbiont communities, and coral death. (iv) The activities of people near reefs increase both fishing pressure and nutrient inputs. In general, these processes favor more rapidly growing competitors, often fleshy seaweeds, and may also result in explosions of predator populations. (v) Combinations of stress appear to be associated with threshold responses and ecological surprises, including devastating pathogen outbreaks. (vi) The fossil record suggests that corals as a group are more likely to suffer extinctions than some of the groups that associate with them, whose habitat requirements may be less stringent.
Resumo:
Reef-building corals and other tropical anthozoans harbor endosymbiotic dinoflagellates. It is now recognized that the dinoflagellates are fundamental to the biology of their hosts, and their carbon and nitrogen metabolisms are linked in important ways. Unlike free living species, growth of symbiotic dinoflagellates is unbalanced and a substantial fraction of the carbon fixed daily by symbiont photosynthesis is released and used by the host for respiration and growth. Release of fixed carbon as low molecular weight compounds by freshly isolated symbiotic dinoflagellates is evoked by a factor (i.e., a chemical agent) present in a homogenate of host tissue. We have identified this "host factor" in the Hawaiian coral Pocillopora damicornis as a set of free amino acids. Synthetic amino acid mixtures, based on the measured free amino acid pools of P. damicornis tissues, not only elicit the selective release of 14C-labeled photosynthetic products from isolated symbiotic dinoflagellates but also enhance total 14CO2 fixation.
Resumo:
Natural coral reefs are in a state of serious decline worldwide. The pressures of over fishing, recreational activities, environmental pollutants, and global warming have stressed these marine ecosystems to the breaking point. One of the oldest methods of augmenting natural reef systems is the implementation of artificial reefs. These projects are not as simple as dumping waste or scrap materials in offshore areas. Proper material selection is vital to produce a healthy artificial marine habitat that is completed on schedule and on budget. This Capstone Project will evaluate the most commonly used materials and provide a comparison of their strengths and weaknesses. This comparison provides a valuable tool for project managers as they begin the reef planning process.
Resumo:
The abundance patterns of tunicate spicules are documented for the Pliocene-Pleistocene sediments at seven sites along the Great Barrier Reef-Queensland Plateau transect. The spatial distribution pattern indicates that tunicate spicules were limited to waters shallower than 900 m. The occurrences of tunicate spicules at Sites 822 and 823 that are deeper than 900 m are ascribed to downslope transport, and their distribution patterns can be used to monitor downslope transport processes. The first common occurrence of tunicate spicules at Sites 822 and 823 around 1.6 Ma may suggest the initiation of the central Great Barrier Reef at this time. The morphology of tunicate spicules varies greatly and appears to be gradational among different forms. Older tunicate assemblages are less diverse than those in younger sediments, presumably because of diagenesis. Tunicate spicules do not appear to be a promising biostratigraphic tool for the Pliocene-Pleistocene.
Resumo:
Upper Quaternary sediment sequences east of the Great Barrier Reef are characterized by alternating siliciclastic- and carbonate-rich horizons caused by changes in the input of various sedimentary components and reflected in cores by variations in bulk carbonate content. A total of 153 measurements of bulk carbonate content were determined using the carbonate-bomb technique for late Pleistocene sediments between 0 and 23.69 meters below sea floor (mbsf) in Ocean Drilling Program Hole 1198A. Average sample resolution was 15 cm and multiple analyses were performed on each sample. Bulk carbonate content ranges from a maximum of 94 wt% at 13.63 mbsf to a minimum of 73 wt% at 14.54 mbsf. Five cyclic trends are observed that may relate to five major glacial events during the last 500 k.y. of the Quaternary.
Resumo:
The derivation of a detailed sea-surface paleotemperature curve for the middle Miocene-Holocene (10-0 Ma) from ODP Site 811 on the Queensland Plateau, northeast Australia, has clarified the role of sea-surface temperature fluctuations as a control on the initiation and development of the extensive carbonate platforms of this region. This curve was derived from isotopic analyses of the planktonic foraminifer Globigerinoides ruber, and converted to temperature using the surface-water paleotemperature equation accounting for variations in global ice volume. The accuracy of these data were confirmed by derivation of paleotemperatures using the water column isotopic gradient (Delta delta18O), corrected for salinity and variations in seafloor water mass temperature. Results indicate that during this period surface-water temperatures were, on average, greater than the minimum required for tropical reef growth (20°C; Veron, 1986), with the exception of the late Miocene and earliest early Pliocene (10-4.9 Ma), when there were repeated intervals of temperatures between 18-20°C. Tropical reef growth on the Queensland Plateau was extensive from the early to early middle Miocene (~21-13 Ma), after which reef development began to decline. A lowstand near 11 Ma probably exposed shallower portions of the plateau; after re-immersion near 7 Ma, the areal extent of reef development was greatly reduced (~ 50%). Paleotemperature data from Site 811 indicate that decreased sea-surface temperatures were likely to have been instrumental in reducing the area of active reef growth on the Queensland Plateau. Reduced reefal growth rates continued until the late Pliocene or Quaternary, despite the increase of average sea-surface paleotemperatures to 22-23°C. Studies on modern corals show that when sea-surface temperatures are below ~24°C, as they were from the late Miocene to the Pleistocene off northeast Australia, corals are stressed and growth rates are greatly reduced. Consequently, when temperatures are in this range, corals have difficulty keeping pace with subsidence and changing environmental factors. In the late Pliocene, sedimentation rates increased due to increases in non-reefal carbonate production and falling sea levels. It was not until the mid-Quaternary (0.6-0.7 Ma) that sea-surface paleotemperatures increased above 24°C as a result of the formation of a western Coral Sea warm water pool. Because of age discrepancies, it is unclear exactly when an effective barrier developed on the central Great Barrier Reef; the formation of the warm water pool was likely to have either assisted the formation of this barrier and/or permitted increased coral growth rates. Fluctuations in sea-surface temperature can account for much of the observed spatial and temporal variations of reef growth and carbonate platform distribution off northeast Australia, and therefore we conclude that paleotemperature variations are a critical control on the development of carbonate platforms, and must be considered an important cause of ancient platform "drowning".
Resumo:
Twelve Late Quaternary TIMS U-Th ages are reported here from 10 coral samples collected in situ from five transgressive coral/algal raised reefs (height: max. 113 m, min. 8 m) and two raised lagoonal deposits (height: max. 18 m, min. 8 m) along and near the west coast of Tanna, which lies in the Median Sedimentary Basin of South Vanuatu, southwest Pacific. These reefs and raised lagoonal deposits represent several age groups: (i) 215 ka (marine oxygen-isotope stage 7) penultimate interglacial (highest elevation and oldest); (ii) one lagoonal deposit of ca 127 ka (marine oxygen-isotope stage 5e); (iii) three last interglacial reefs with ages 102, 89 and 81 ka (representing marine oxygen-isotope stages 5c, 5b and 5a, respectively, of the latter part of the last interglacial); (iv) a lagoonal deposit with a 92 ka age (5b); and (v) a Holocene reef (age >5.7-5.0 ka) (lowest elevation and youngest). A ca 4.9 ka regressive reef (at elevation of 1.5 m above sea-level) is consistent with an island-wide 6.5 m uplift (probably largely coseismic), and a probable further island-wide uplift occurred in the late Holocene. The U-series ages taken together with the heights of transgressive reefs show that uplift since 215 ka was, on average, at similar to0.52 mm/y; although since 5 ka the uplift rate was, on average, similar to1.6 mm/y (the assumption being that a 1.5 m above sea-level reef has a coseismic origin). Elevation of transgressive reefs 5a, 5b and 5c and their ages indicates an island-wide subsidence during the period ?124-89 ka (i.e. Late Quaternary uplift/subsidence was jerky). Late Quaternary uplift/subsidence on the northwest coast of Tanna is considered to be due to irregular thicknesses of crust being subducted beneath Tanna.