809 resultados para Copyright Task Force
Resumo:
We have combined high-resolution atomic force microscopy (AFM) imaging and force spectroscopy to gain insight into the interaction forces between the individual protomers of the hexagonally packed intermediate (HPI) layer of Deinococcus radiodurans. After imaging the HPI layer, the AFM stylus was attached to individual protomers by enforced stylus-sample contact to allow force spectroscopy experiments. Imaging of the HPI layer after recording force-extension curves allowed adhesion forces to be correlated with structural alterations. By using this approach, individual protomers of the HPI layer were found to be removed at pulling forces of ≈300 pN. Furthermore, it was possible to sequentially unzip entire bacterial pores formed by six HPI protomers. The combination of high-resolution AFM imaging of individual proteins with the determination of their intramolecular forces is a method of studying the mechanical stability of supramolecular structures at the level of single molecules.
Resumo:
Aggregation of Ig light chains to form amyloid fibrils is a characteristic feature of light-chain amyloidosis, a light-chain deposition disease. A recombinant variable domain of the light chain SMA was used to form amyloid fibrils in vitro. Fibril formation was monitored by atomic force microscopy imaging. Single filaments 2.4 nm in diameter were predominant at early times; protofibrils 4.0 nm in diameter were predominant at intermediate times; type I and type II fibrils 8.0 nm and 6.0 nm in diameter, respectively, were predominant at the endpoints. The increase in number of fibrils correlated with increased binding of the fluorescent dye thioflavin T. The fibrils and protofibrils showed a braided structure, suggesting that their formation involves the winding of protofibrils and filaments, respectively. These observations support a model in which two filaments combine to form a protofibril, two protofibrils intertwine to form a type I fibril, and three filaments form a type II fibril.
Resumo:
Antipsychotic drug treatment of schizophrenia may be complicated by side effects of widespread dopaminergic antagonism, including exacerbation of negative and cognitive symptoms due to frontal cortical hypodopaminergia. Atypical antipsychotics have been shown to enhance frontal dopaminergic activity in animal models. We predicted that substitution of risperidone for typical antipsychotic drugs in the treatment of schizophrenia would be associated with enhanced functional activation of frontal cortex. We measured cerebral blood oxygenation changes during periodic performance of a verbal working memory task, using functional MRI, on two occasions (baseline and 6 weeks later) in two cohorts of schizophrenic patients. One cohort (n = 10) was treated with typical antipsychotic drugs throughout the study. Risperidone was substituted for typical antipsychotics after baseline assessment in the second cohort (n = 10). A matched group of healthy volunteers (n = 10) was also studied on a single occasion. A network comprising bilateral dorsolateral prefrontal and lateral premotor cortex, the supplementary motor area, and posterior parietal cortex was activated by working memory task performance in both the patients and comparison subjects. A two-way analysis of covariance was used to estimate the effect of substituting risperidone for typical antipsychotics on power of functional response in the patient group. Substitution of risperidone increased functional activation in right prefrontal cortex, supplementary motor area, and posterior parietal cortex at both voxel and regional levels of analysis. This study provides direct evidence for significantly enhanced frontal function in schizophrenic patients after substitution of risperidone for typical antipsychotic drugs, and it indicates the potential value of functional MRI as a tool for longitudinal assessment of psychopharmacological effects on cerebral physiology.
Resumo:
Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10−26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin–actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600–320 pN when filaments were turned through 90°, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.
Resumo:
In the last decade, several monomeric and heterotrimeric guanine nucleotide binding proteins have been identified to associate with secretory vesicles and to be implicated in exocytosis. Vesicle volume also has been proposed to play a regulatory role in secretory vesicle fusion at the plasma membrane. However, the molecular mechanism of function of the guanine nucleotide binding proteins and of the regulation of secretory vesicle volume in the exocytotic process remains unclear. In this study, we report association of the secretory vesicle membrane with the α subunit of a heterotrimeric GTP binding protein Gαi3 and implicate its involvement in vesicle swelling. Using an atomic force microscope in combination with confocal microscopy, we were able to study the dynamics of isolated zymogen granules, the secretory vesicles in exocrine pancreas. Exposure of zymogen granules to GTP resulted in a 15–25% increase in vesicle height as measured by the atomic force microscope and a similar increase in vesicle diameter as determined by confocal microscopy. Mas7, an active mastoparan analog known to stimulate Gi proteins, was found to stimulate the GTPase activity of isolated zymogen granules and cause swelling. Increase in vesicle size in the presence of GTP, NaF, and Mas7 were irreversible and KCl-sensitive. Ca2+ had no effect on zymogen granule size. Taken together, the results indicate that Gαi3 protein localized in the secretory vesicle membrane mediates vesicle swelling, a potentially important prerequisite for vesicle fusion at the cell plasma membrane.
Resumo:
Extracellular fluid macroviscosity (EFM), modified by macromolecular cosolvents as occurs in body fluids, has been shown to affect cell membrane protein activities but not isolated proteins. In search for the mechanism of this phenomenon, we examined the effect of EFM on mechanical fluctuations of the cell membrane of human erythrocytes. The macroviscosity of the external medium was varied by adding to it various macromolecules [dextrans (70, 500, and 2,000 kDa), polyethylene glycol (20 kDa), and carboxymethyl-cellulose (100 kDa)], which differ in size, chemical nature, and in their capacity to increase fluid viscosity. The parameters of cell membrane fluctuations (maximal amplitude and half-width of amplitude distribution) were diminished with the elevation of solvent macroviscosity, regardless of the cosolvent used to increase EFM. Because thermally driven membrane fluctuations cannot be damped by elevation of EFM, the existence of a metabolic driving force is suggested. This is supported by the finding that in ATP-depleted red blood cells elevation of EMF did not affect cell membrane fluctuations. This study demonstrates that (i) EFM is a regulator of membrane dynamics, providing a possible mechanism by which EFM affects cell membrane activities; and (ii) cell membrane fluctuations are driven by a metabolic driving force in addition to the thermal one.
Resumo:
In higher eukaryotic cells, the spindle forms along with chromosome condensation in mitotic prophase. In metaphase, chromosomes are aligned on the spindle with sister kinetochores facing toward the opposite poles. In anaphase A, sister chromatids separate from each other without spindle extension, whereas spindle elongation takes place during anaphase B. We have critically examined whether such mitotic stages also occur in a lower eukaryote, Schizosaccharomyces pombe. Using the green fluorescent protein tagging technique, early mitotic to late anaphase events were observed in living fission yeast cells. S. pombe has three phases in spindle dynamics, spindle formation (phase 1), constant spindle length (phase 2), and spindle extension (phase 3). Sister centromere separation (anaphase A) rapidly occurred at the end of phase 2. The centromere showed dynamic movements throughout phase 2 as it moved back and forth and was transiently split in two before its separation, suggesting that the centromere was positioned in a bioriented manner toward the poles at metaphase. Microtubule-associating Dis1 was required for the occurrence of constant spindle length and centromere movement in phase 2. Normal transition from phase 2 to 3 needed DNA topoisomerase II and Cut1 but not Cut14. The duration of each phase was highly dependent on temperature.
Resumo:
Functional neuroimaging studies in human subjects using positron emission tomography or functional magnetic resonance imaging (fMRI) are typically conducted by collecting data over extended time periods that contain many similar trials of a task. Here methods for acquiring fMRI data from single trials of a cognitive task are reported. In experiment one, whole brain fMRI was used to reliably detect single-trial responses in a prefrontal region within single subjects. In experiment two, higher temporal sampling of a more limited spatial field was used to measure temporal offsets between regions. Activation maps produced solely from the single-trial data were comparable to those produced from blocked runs. These findings suggest that single-trial paradigms will be able to exploit the high temporal resolution of fMRI. Such paradigms will provide experimental flexibility and time-resolved data for individual brain regions on a trial-by-trial basis.
Resumo:
We studied single molecular interactions between surface-attached rat CD2, a T-lymphocyte adhesion receptor, and CD48, a CD2 ligand found on antigen-presenting cells. Spherical particles were coated with decreasing densities of CD48–CD4 chimeric molecules then driven along CD2-derivatized glass surfaces under a low hydrodynamic shear rate. Particles exhibited multiple arrests of varying duration. By analyzing the dependence of arrest frequency and duration on the surface density of CD48 sites, it was concluded that (i) arrests were generated by single molecular bonds and (ii) the initial bond dissociation rate was about 7.8 s−1. The force exerted on bonds was increased from about 11 to 22 pN; the detachment rate exhibited a twofold increase. These results agree with and extend studies on the CD2–CD48 interaction by surface plasmon resonance technology, which yielded an affinity constant of ≈104 M−1 and a dissociation rate of ≥6 s−1. It is concluded that the flow chamber technology can be an useful complement to atomic force microscopy for studying interactions between isolated biomolecules, with a resolution of about 20 ms and sensitivity of a few piconewtons. Further, this technology might be extended to actual cells.
Resumo:
The conformational space annealing (CSA) method for global optimization has been applied to the 10-55 fragment of the B-domain of staphylococcal protein A (protein A) and to a 75-residue protein, apo calbindin D9K (PDB ID code 1CLB), by using the UNRES off-lattice united-residue force field. Although the potential was not calibrated with these two proteins, the native-like structures were found among the low-energy conformations, without the use of threading or secondary-structure predictions. This is because the CSA method can find many distinct families of low-energy conformations. Starting from random conformations, the CSA method found that there are two families of low-energy conformations for each of the two proteins, the native-like fold and its mirror image. The CSA method converged to the same low-energy folds in all cases studied, as opposed to other optimization methods. It appears that the CSA method with the UNRES force field, which is based on the thermodynamic hypothesis, can be used in prediction of protein structures in real time.
Resumo:
Single-molecule force spectroscopy reveals unfolding of domains in titin on stretching. We provide a theoretical framework for these experiments by computing the phase diagrams for force-induced unfolding of single-domain proteins using lattice models. The results show that two-state folders (at zero force) unravel cooperatively, whereas stretching of non-two-state folders occurs through intermediates. The stretching rates of individual molecules show great variations reflecting the heterogeneity of force-induced unfolding pathways. The approach to the stretched state occurs in a stepwise “quantized” manner. Unfolding dynamics and forces required to stretch proteins depend sensitively on topology. The unfolding rates increase exponentially with force f till an optimum value, which is determined by the barrier to unfolding when f = 0. A mapping of these results to proteins shows qualitative agreement with force-induced unfolding of Ig-like domains in titin. We show that single-molecule force spectroscopy can be used to map the folding free energy landscape of proteins in the absence of denaturants.
Resumo:
We report the study of the dynamics of the unbinding process under a force load f of adsorbed proteins (fibrinogen) on a solid surface (hydrophilic silica) by means of atomic force microscopy spectroscopy. By varying the loading rate rf, defined by f = rf t, t being the time, we find that, as for specific interactions, the mean rupture force increases with rf. This unbinding process is analyzed in the framework of the widely used Bell model. The typical dissociation rate at zero force entering in the model lies between 0.02 and 0.6 s−1. Each measured rupture is characterized by a force f0, which appears to be quantized in integer multiples of 180–200 pN.
Resumo:
Human ability to switch from one cognitive task to another involves both endogenous preparation without an external stimulus and exogenous adjustment in response to the external stimulus. In an event-related functional MRI study, participants performed pairs of two tasks that are either the same (task repetition) or different (task switch) from each other. On half of the trials, foreknowledge about task repetition or task switch was available. On the other half, it was not. Endogenous preparation seems to involve lateral prefrontal cortex (BA 46/45) and posterior parietal cortex (BA 40). During preparation, higher activation increases in inferior lateral prefrontal cortex and superior posterior parietal cortex were associated with foreknowledge than with no foreknowledge. Exogenous adjustment seems to involve superior prefrontal cortex (BA 8) and posterior parietal cortex (BA 39/40) in general. During a task switch with no foreknowledge, activations in these areas were relatively higher than during a task repetition with no foreknowledge. These results suggest that endogenous preparation and exogenous adjustment for a task switch may be independent processes involving different brain areas.
Resumo:
The atomic force microscope (AFM) was used to continuously follow height changes of individual protein molecules exposed to physiological stimuli. A AFM tip was coated with ROMK1 (a cloned renal epithelial potassium channel known to be highly pH sensitive) and lowered onto atomically flat mica surface until the protein was sandwiched between AFM tip and mica. Because the AFM tip was an integral part of a highly flexible cantilever, any structural alterations of the sandwiched molecule were transmitted to the cantilever. This resulted in a distortion of the cantilever that was monitored by means of a laser beam. With this system it was possible to resolve vertical height changes in the ROMK1 protein of ≥0.2 nm (approximately 5% of the molecule’s height) with a time resolution of ≥1 msec. When bathed in electrolyte solution that contained the catalytic subunit of protein kinase A and 0.1 mM ATP (conditions that activate the native ion channel), we found stochastically occurring height fluctuations in the ROMK1 molecule. These changes in height were pH-dependent, being greatest at pH 7.6, and lowering the pH (either by titration or by the application of CO2) reduced their magnitude. The data show that overall changes in shape of proteins occur stochastically and increase in size and frequency when the proteins are active. This AFM “molecular-sandwich” technique, called MOST, measures structural activity of proteins in real time and could prove useful for studies on the relationship between structure and function of proteins at the molecular level.