915 resultados para Continuous flow injection system, FIAlab 2600
Resumo:
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
Resumo:
The ocean history of reactive phosphorus (P) (i.e., dissolved P available to fuel oceanic primary productivity) is of interest because of the role of P as a biolimiting nutrient, and knowledge of P burial in marine sediments is key to testing hypotheses about temporal changes in P input or output fluxes. Our understanding of the history of the P cycle over the Cenozoic has increased substantially with temporal records of reactive P mass accumulation rates from open-ocean Pacific and Atlantic equatorial sites. However, questions about the relative importance of nutrient burial in ocean-margin sediments relative to burial in open-ocean sediments and about the extent of P remobilization in organic-rich, reducing environments characteristic of margin sediments remain unresolved. Nutrient burial in oceanic boundary current systems has been suggested to have a controlling role in oceanic nutrient budgets in certain time intervals (Vincent and Berger, 1985, doi:10.1029/GM032p0455), with higher sediment accumulation rates balancing the limited spatial extent of these sediments. Some investigators suggest that remobilization of P from reducing sediments in margin settings is a significant positive feedback to primary productivity (e.g., Van Cappellan and Ingall, 1994, doi:10.1029/94PA01455), whereas other results indicate that both P uptake and P release may occur in these settings depending on the balance of organic carbon and iron supply to the sediments and on the oxygenation of bottom waters (McManus et al., 1997, doi:10.1016/S0016-7037(97)00138-5). It is important to quantitatively understand the geochemistry of reactive P in margin sediments, where productivity and delivery of organic-rich material to the sediments in relatively shallow-water settings is often sufficient to promote anoxia in interstitial waters. To address these questions, we determined the P concentrations and geochemistry in sediment samples from eight sites drilled during Ocean Drilling Program (ODP) Leg 167, California margin (Sites 1010-1012, 1014, 1016-1017, and 1021-1022). These results are the first records of reactive P concentrations on long time scales-required for the calculation of P accumulation rates-for sediments from a highly productive eastern boundary current setting. In addition, we determined calcium carbonate contents and biogenic silica concentrations to define the environments of sedimentary production, burial, and diagenesis.
Resumo:
Sea ice and dust flux increased greatly in the Southern Ocean during the last glacial period. Palaeorecords provide contradictory evidence about marine productivity in this region, but beyond one glacial cycle, data were sparse. Here we present continuous chemical proxy data spanning the last eight glacial cycles (740,000 years) from the Dome C Antarctic ice core. These data constrain winter sea-ice extent in the Indian Ocean, Southern Ocean biogenic productivity and Patagonian climatic conditions. We found that maximum sea-ice extent is closely tied to Antarctic temperature on multi-millennial timescales, but less so on shorter timescales. Biological dimethylsulphide emissions south of the polar front seem to have changed little with climate, suggesting that sulphur compounds were not active in climate regulation. We observe large glacial-interglacial contrasts in iron deposition, which we infer reflects strongly changing Patagonian conditions. During glacial terminations, changes in Patagonia apparently preceded sea-ice reduction, indicating that multiple mechanisms may be responsible for different phases of CO2 increase during glacial terminations. We observe no changes in internal climatic feedbacks that could have caused the change in amplitude of Antarctic temperature variations observed 440,000 years ago.
Resumo:
Presented is a spatial distribution of Temperature, Salinity, Oxygen, Nitrate, Ammonia Nitrogen, Organic Nitrogen, Phosphate, Organic Phosphate, and Silicate data from the Sea of Okhotsk during the 1990 - 1997 period for the months of June - August.