848 resultados para Content-Based Image Retrieval (CBIR)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Gastric cancer remains a serious health concern worldwide. Patients would greatly benefit from the discovery of new biomarkers that predict outcome more accurately and allow better treatment and follow-up decisions. Here, we used a retrospective, observational study to assess the expression and prognostic value of the transcription factors SOX2 and CDX2 in gastric cancer. Methods SOX2, CDX2, MUC5AC and MUC2 expression were assessed in 201 gastric tumors by immunohistochemistry. SOX2 and CDX2 expression were crossed with clinicopathological and follow-up data to determine their impact on tumor behavior and outcome. Moreover, SOX2 locus copy number status was assessed by FISH (N = 21) and Copy Number Variation Assay (N = 62). Results SOX2 was expressed in 52% of the gastric tumors and was significantly associated with male gender, T stage and N stage. Moreover, SOX2 expression predicted poorer patient survival, and the combination with CDX2 defined two molecular phenotypes, SOX2+CDX2- versus SOX2-CDX2+, that predict the worst and the best long-term patients’ outcome. These profiles combined with clinicopathological parameters stratify the prognosis of patients with intestinal and expanding tumors and in those without signs of venous invasion. Finally, SOX2 locus copy number gains were found in 93% of the samples reaching the amplification threshold in 14% and significantly associating with protein expression. Conclusions We showed, for the first time, that SOX2 combined with CDX2 expression profile in gastric cancer segregate patients into different prognostic groups, complementing the clinicopathological information. We further demonstrate a molecular mechanism for SOX2 expression in a subset of gastric cancer cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes an FPGA-based architecture for onboard hyperspectral unmixing. This method based on the Vertex Component Analysis (VCA) has several advantages, namely it is unsupervised, fully automatic, and it works without dimensionality reduction (DR) pre-processing step. The architecture has been designed for a low cost Xilinx Zynq board with a Zynq-7020 SoC FPGA based on the Artix-7 FPGA programmable logic and tested using real hyperspectral datasets. Experimental results indicate that the proposed implementation can achieve real-time processing, while maintaining the methods accuracy, which indicate the potential of the proposed platform to implement high-performance, low cost embedded systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática - Área de Especialização em Tecnologias do Conhecimento e Decisão

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Endmember extraction (EE) is a fundamental and crucial task in hyperspectral unmixing. Among other methods vertex component analysis ( VCA) has become a very popular and useful tool to unmix hyperspectral data. VCA is a geometrical based method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Many Hyperspectral imagery applications require a response in real time or near-real time. Thus, to met this requirement this paper proposes a parallel implementation of VCA developed for graphics processing units. The impact on the complexity and on the accuracy of the proposed parallel implementation of VCA is examined using both simulated and real hyperspectral datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation presented to obtain the degree of Doctor of Philosophy in Electrical Engineering, speciality on Perceptional Systems, by the Universidade Nova de Lisboa, Faculty of Sciences and Technology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperspectral remote sensing exploits the electromagnetic scattering patterns of the different materials at specific wavelengths [2, 3]. Hyperspectral sensors have been developed to sample the scattered portion of the electromagnetic spectrum extending from the visible region through the near-infrared and mid-infrared, in hundreds of narrow contiguous bands [4, 5]. The number and variety of potential civilian and military applications of hyperspectral remote sensing is enormous [6, 7]. Very often, the resolution cell corresponding to a single pixel in an image contains several substances (endmembers) [4]. In this situation, the scattered energy is a mixing of the endmember spectra. A challenging task underlying many hyperspectral imagery applications is then decomposing a mixed pixel into a collection of reflectance spectra, called endmember signatures, and the corresponding abundance fractions [8–10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. Linear mixing model holds approximately when the mixing scale is macroscopic [13] and there is negligible interaction among distinct endmembers [3, 14]. If, however, the mixing scale is microscopic (or intimate mixtures) [15, 16] and the incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [17], the linear model is no longer accurate. Linear spectral unmixing has been intensively researched in the last years [9, 10, 12, 18–21]. It considers that a mixed pixel is a linear combination of endmember signatures weighted by the correspondent abundance fractions. Under this model, and assuming that the number of substances and their reflectance spectra are known, hyperspectral unmixing is a linear problem for which many solutions have been proposed (e.g., maximum likelihood estimation [8], spectral signature matching [22], spectral angle mapper [23], subspace projection methods [24,25], and constrained least squares [26]). In most cases, the number of substances and their reflectances are not known and, then, hyperspectral unmixing falls into the class of blind source separation problems [27]. Independent component analysis (ICA) has recently been proposed as a tool to blindly unmix hyperspectral data [28–31]. ICA is based on the assumption of mutually independent sources (abundance fractions), which is not the case of hyperspectral data, since the sum of abundance fractions is constant, implying statistical dependence among them. This dependence compromises ICA applicability to hyperspectral images as shown in Refs. [21, 32]. In fact, ICA finds the endmember signatures by multiplying the spectral vectors with an unmixing matrix, which minimizes the mutual information among sources. If sources are independent, ICA provides the correct unmixing, since the minimum of the mutual information is obtained only when sources are independent. This is no longer true for dependent abundance fractions. Nevertheless, some endmembers may be approximately unmixed. These aspects are addressed in Ref. [33]. Under the linear mixing model, the observations from a scene are in a simplex whose vertices correspond to the endmembers. Several approaches [34–36] have exploited this geometric feature of hyperspectral mixtures [35]. Minimum volume transform (MVT) algorithm [36] determines the simplex of minimum volume containing the data. The method presented in Ref. [37] is also of MVT type but, by introducing the notion of bundles, it takes into account the endmember variability usually present in hyperspectral mixtures. The MVT type approaches are complex from the computational point of view. Usually, these algorithms find in the first place the convex hull defined by the observed data and then fit a minimum volume simplex to it. For example, the gift wrapping algorithm [38] computes the convex hull of n data points in a d-dimensional space with a computational complexity of O(nbd=2cþ1), where bxc is the highest integer lower or equal than x and n is the number of samples. The complexity of the method presented in Ref. [37] is even higher, since the temperature of the simulated annealing algorithm used shall follow a log( ) law [39] to assure convergence (in probability) to the desired solution. Aiming at a lower computational complexity, some algorithms such as the pixel purity index (PPI) [35] and the N-FINDR [40] still find the minimum volume simplex containing the data cloud, but they assume the presence of at least one pure pixel of each endmember in the data. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. PPI algorithm uses the minimum noise fraction (MNF) [41] as a preprocessing step to reduce dimensionality and to improve the signal-to-noise ratio (SNR). The algorithm then projects every spectral vector onto skewers (large number of random vectors) [35, 42,43]. The points corresponding to extremes, for each skewer direction, are stored. A cumulative account records the number of times each pixel (i.e., a given spectral vector) is found to be an extreme. The pixels with the highest scores are the purest ones. N-FINDR algorithm [40] is based on the fact that in p spectral dimensions, the p-volume defined by a simplex formed by the purest pixels is larger than any other volume defined by any other combination of pixels. This algorithm finds the set of pixels defining the largest volume by inflating a simplex inside the data. ORA SIS [44, 45] is a hyperspectral framework developed by the U.S. Naval Research Laboratory consisting of several algorithms organized in six modules: exemplar selector, adaptative learner, demixer, knowledge base or spectral library, and spatial postrocessor. The first step consists in flat-fielding the spectra. Next, the exemplar selection module is used to select spectral vectors that best represent the smaller convex cone containing the data. The other pixels are rejected when the spectral angle distance (SAD) is less than a given thresh old. The procedure finds the basis for a subspace of a lower dimension using a modified Gram–Schmidt orthogonalizati on. The selected vectors are then projected onto this subspace and a simplex is found by an MV T pro cess. ORA SIS is oriented to real-time target detection from uncrewed air vehicles using hyperspectral data [46]. In this chapter we develop a new algorithm to unmix linear mixtures of endmember spectra. First, the algorithm determines the number of endmembers and the signal subspace using a newly developed concept [47, 48]. Second, the algorithm extracts the most pure pixels present in the data. Unlike other methods, this algorithm is completely automatic and unsupervised. To estimate the number of endmembers and the signal subspace in hyperspectral linear mixtures, the proposed scheme begins by estimating sign al and noise correlation matrices. The latter is based on multiple regression theory. The signal subspace is then identified by selectin g the set of signal eigenvalue s that best represents the data, in the least-square sense [48,49 ], we note, however, that VCA works with projected and with unprojected data. The extraction of the end members exploits two facts: (1) the endmembers are the vertices of a simplex and (2) the affine transformation of a simplex is also a simplex. As PPI and N-FIND R algorithms, VCA also assumes the presence of pure pixels in the data. The algorithm iteratively projects data on to a direction orthogonal to the subspace spanned by the endmembers already determined. The new end member signature corresponds to the extreme of the projection. The algorithm iterates until all end members are exhausted. VCA performs much better than PPI and better than or comparable to N-FI NDR; yet it has a computational complexity between on e and two orders of magnitude lower than N-FINDR. The chapter is structure d as follows. Section 19.2 describes the fundamentals of the proposed method. Section 19.3 and Section 19.4 evaluate the proposed algorithm using simulated and real data, respectively. Section 19.5 presents some concluding remarks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Media content personalisation is a major challenge involving viewers as well as media content producer and distributor businesses. The goal is to provide viewers with media items aligned with their interests. Producers and distributors engage in item negotiations to establish the corresponding service level agreements (SLA). In order to address automated partner lookup and item SLA negotiation, this paper proposes the MultiMedia Brokerage (MMB) platform, which is a multiagent system that negotiates SLA regarding media items on behalf of media content producer and distributor businesses. The MMB platform is structured in four service layers: interface, agreement management, business modelling and market. In this context, there are: (i) brokerage SLA (bSLA), which are established between individual businesses and the platform regarding the provision of brokerage services; and (ii) item SLA (iSLA), which are established between producer and distributor businesses about the provision of media items. In particular, this paper describes the negotiation, establishment and enforcement of bSLA and iSLA, which occurs at the agreement and negotiation layers, respectively. The platform adopts a pay-per-use business model where the bSLA define the general conditions that apply to the related iSLA. To illustrate this process, we present a case study describing the negotiation of a bSLA instance and several related iSLA instances. The latter correspond to the negotiation of the Electronic Program Guide (EPG) for a specific end viewer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The visual image is a fundamental component of epiphany, stressing its immediacy and vividness, corresponding to the enargeia of the traditional ekphrasis and also playing with cultural and social meanings. Morris Beja in his seminal book Epiphany in the Modern Novel, draws our attention to the distinction made by Joyce between the epiphany originated in a common object, in a discourse or gesture and the one arising in “a memorable phase of the mind itself”. This type materializes in the “dream-epiphany” and in the epiphany based in memory. On the other hand, Robert Langbaum in his study of the epiphanic mode, suggests that the category of “visionary epiphany” could account for the modern effect of an internally glowing vision like Blake’s “The Tyger”, which projects the vitality of a real tyger. The short story, whose length renders it a fitting genre for the use of different types of epiphany, has dealt with the impact of the visual image in this technique, to convey different effects and different aesthetic aims. This paper will present some examples of this occurrence in short stories of authors in whose work epiphany is a fundamental concept and literary technique: Walter Pater, Joseph Conrad, K. Mansfield, Clarice Lispector. Pater’s “imaginary portraits” concentrate on “priviledged moments” of the lives of the characters depicting their impressions through pictorial language; Conrad tries to show “moments of awakening” that can be remembered by the eye; Mansfield suggests that epiphany, the “glimpse”, should replace plot as an internal ordering principle of her impressionist short-stories; in C. Lispector the visualization of some situations is so aggressive that it causes nausea and a radical revelation on the protagonist’s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, with specific characteristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to support decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the action to be performed. Our use of game theory is intended for supporting one specific agent and not for achieving the equilibrium in the market. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Electricity Market are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial Para obtenção do grau de Mestre em Engenharia Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current economic crisis has rushed even more the economists’ concerns to identify new directions for the sustainable development of the society. In this context, the human capital is crystallised as the key variable of the creative economy and of the knowledge-based society. As such, we have directed the research underlying this paper to identifying the most eloquent indicators of human capital to meet the demands of the knowledge-based society and sustainable development as well as towards achieving a comprehensive analysis of the human capital in the EU countries, respectively of a comparative analysis: Romania - Portugal. To carry out this paper, the methodology used is based on the interdisciplinary triangulation involving approaches from the perspective of human resource management, economy and economic statistics. The research techniques used consist of the content analysis and investigation of secondary data of international organisations accredited in the field of this research, such as: the United Nation Development Programme - Human Development Reports, World Bank - World Development Reports, International Labour Organisation, Eurostat, European Commission’s Eurobarometer surveys and reports on human capital. The research results emphasise both similarities and differences between the two countries under the comparative analysis and the main directions in which one has to invest for the development of human capital.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim of the paper: The purpose of this paper is to examine human resources management practices (HRM practices) in small firms and to improve the understanding of the relationship between this kind of practices and business growth. This exploratory study is based on the resource-based view of the firm and empirical work carried out in two small firms by relating HRM practices with the firms’ results. Contribution to the literature: This is an in-depth study of HRM practices and its impact on performance growth in micro firms, isolating and controlling for most of the contextual and internal variables considered in the literature that relate HRM to growth. Firm growth analysis was broadened by the use of several dependent variables: employment growth and operational and financial performance growth. Some hypotheses for further research in identifying HRM practices in small business and its relation with firm growth are suggested. Methodology: Case study methodology was used to study two firms. The techniques used to collect data were semi-structured interviews to the owner and all the employees, unstructured observation at the firms’ facilities (during two days), entrepreneur profile definition (survey answer) and document data collection (on demographic characterization and performance results). Data was analyzed through content analysis methodology, and categories derived from the interviews’ protocols and literature. Results and implications: Results revealed that despite the firms’ organizational characteristics similarities, they differ significantly in owners’ motivation to grow, HRM practices and organizational performance and growth. Future studies should pay special attention to owner willingness to grow, to firms’ years of experience in business, to staff’s years of experience in their field of work and turnover. HRM practices in micro/small firms should be better defined and characterized. The external image of management posture relating to longitudinal financial results and growth should also be explored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Target tracking with bearing-only sensors is a challenging problem when the target moves dynamically in complex scenarios. Besides the partial observability of such sensors, they have limited field of views, occlusions can occur, etc. In those cases, cooperative approaches with multiple tracking robots are interesting, but the different sources of uncertain information need to be considered appropriately in order to achieve better estimates. Even though there exist probabilistic filters that can estimate the position of a target dealing with incertainties, bearing-only measurements bring usually additional problems with initialization and data association. In this paper, we propose a multi-robot triangulation method with a dynamic baseline that can triangulate bearing-only measurements in a probabilistic manner to produce 3D observations. This method is combined with a decentralized stochastic filter and used to tackle those initialization and data association issues. The approach is validated with simulations and field experiments where a team of aerial and ground robots with cameras track a dynamic target.