799 resultados para Content Based Image Retrieval (CBIR)
Resumo:
A first study in order to construct a simple model of the mammalian retina is reported. The basic elements for this model are Optical Programmable Logic Cells, OPLCs, previously employed as a functional element for Optical Computing. The same type of circuit simulates the five types of neurons present in the retina. Different responses are obtained by modifying either internal or external connections. Two types of behaviors are reported: symmetrical and non-symmetrical with respect to light position. Some other higher functions, as the possibility to differentiate between symmetric and non-symmetric light images, are performed by another simulation of the first layers of the visual cortex. The possibility to apply these models to image processing is reported.
Resumo:
A proposal for a model of the primary visual cortex is reported. It is structured with the basis of a simple unit cell able to perform fourteen pairs of different boolean functions corresponding to the two possible inputs. As a first step, a model of the retina is presented. Different types of responses, according to the different possibilities of interconnecting the building blocks, have been obtained. These responses constitute the basis for an initial configuration of the mammalian primary visual cortex. Some qualitative functions, as symmetry or size of an optical input, have been obtained. A proposal to extend this model to some higher functions, concludes the paper.
Resumo:
Purpose: A fully three-dimensional (3D) massively parallelizable list-mode ordered-subsets expectation-maximization (LM-OSEM) reconstruction algorithm has been developed for high-resolution PET cameras. System response probabilities are calculated online from a set of parameters derived from Monte Carlo simulations. The shape of a system response for a given line of response (LOR) has been shown to be asymmetrical around the LOR. This work has been focused on the development of efficient region-search techniques to sample the system response probabilities, which are suitable for asymmetric kernel models, including elliptical Gaussian models that allow for high accuracy and high parallelization efficiency. The novel region-search scheme using variable kernel models is applied in the proposed PET reconstruction algorithm. Methods: A novel region-search technique has been used to sample the probability density function in correspondence with a small dynamic subset of the field of view that constitutes the region of response (ROR). The ROR is identified around the LOR by searching for any voxel within a dynamically calculated contour. The contour condition is currently defined as a fixed threshold over the posterior probability, and arbitrary kernel models can be applied using a numerical approach. The processing of the LORs is distributed in batches among the available computing devices, then, individual LORs are processed within different processing units. In this way, both multicore and multiple many-core processing units can be efficiently exploited. Tests have been conducted with probability models that take into account the noncolinearity, positron range, and crystal penetration effects, that produced tubes of response with varying elliptical sections whose axes were a function of the crystal's thickness and angle of incidence of the given LOR. The algorithm treats the probability model as a 3D scalar field defined within a reference system aligned with the ideal LOR. Results: This new technique provides superior image quality in terms of signal-to-noise ratio as compared with the histogram-mode method based on precomputed system matrices available for a commercial small animal scanner. Reconstruction times can be kept low with the use of multicore, many-core architectures, including multiple graphic processing units. Conclusions: A highly parallelizable LM reconstruction method has been proposed based on Monte Carlo simulations and new parallelization techniques aimed at improving the reconstruction speed and the image signal-to-noise of a given OSEM algorithm. The method has been validated using simulated and real phantoms. A special advantage of the new method is the possibility of defining dynamically the cut-off threshold over the calculated probabilities thus allowing for a direct control on the trade-off between speed and quality during the reconstruction.
Resumo:
Evolvable Hardware (EH) is a technique that consists of using reconfigurable hardware devices whose configuration is controlled by an Evolutionary Algorithm (EA). Our system consists of a fully-FPGA implemented scalable EH platform, where the Reconfigurable processing Core (RC) can adaptively increase or decrease in size. Figure 1 shows the architecture of the proposed System-on-Programmable-Chip (SoPC), consisting of a MicroBlaze processor responsible of controlling the whole system operation, a Reconfiguration Engine (RE), and a Reconfigurable processing Core which is able to change its size in both height and width. This system is used to implement image filters, which are generated autonomously thanks to the evolutionary process. The system is complemented with a camera that enables the usage of the platform for real time applications.
Resumo:
This paper presents a vision based autonomous landing control approach for unmanned aerial vehicles (UAV). The 3D position of an unmanned helicopter is estimated based on the homographies estimated of a known landmark. The translation and altitude estimation of the helicopter against the helipad position are the only information that is used to control the longitudinal, lateral and descend speeds of the vehicle. The control system approach consists in three Fuzzy controllers to manage the speeds of each 3D axis of the aircraft s coordinate system. The 3D position estimation was proven rst, comparing it with the GPS + IMU data with very good results. The robust of the vision algorithm against occlusions was also tested. The excellent behavior of the Fuzzy control approach using the 3D position estimation based in homographies was proved in an outdoors test using a real unmanned helicopter.
Resumo:
We present an adaptive unequal error protection (UEP) strategy built on the 1-D interleaved parity Application Layer Forward Error Correction (AL-FEC) code for protecting the transmission of stereoscopic 3D video content encoded with Multiview Video Coding (MVC) through IP-based networks. Our scheme targets the minimization of quality degradation produced by packet losses during video transmission in time-sensitive application scenarios. To that end, based on a novel packet-level distortion model, it selects in real time the most suitable packets within each Group of Pictures (GOP) to be protected and the most convenient FEC technique parameters, i.e., the size of the FEC generator matrix. In order to make these decisions, it considers the relevance of the packet, the behavior of the channel, and the available bitrate for protection purposes. Simulation results validate both the distortion model introduced to estimate the importance of packets and the optimization of the FEC technique parameter values.
Resumo:
This work proposes an optimization of a semi-supervised Change Detection methodology based on a combination of Change Indices (CI) derived from an image multitemporal data set. For this purpose, SPOT 5 Panchromatic images with 2.5 m spatial resolution have been used, from which three Change Indices have been calculated. Two of them are usually known indices; however the third one has been derived considering the Kullbak-Leibler divergence. Then, these three indices have been combined forming a multiband image that has been used in as input for a Support Vector Machine (SVM) classifier where four different discriminant functions have been tested in order to differentiate between change and no_change categories. The performance of the suggested procedure has been assessed applying different quality measures, reaching in each case highly satisfactory values. These results have demonstrated that the simultaneous combination of basic change indices with others more sophisticated like the Kullback-Leibler distance, and the application of non-parametric discriminant functions like those employees in the SVM method, allows solving efficiently a change detection problem.
Resumo:
Automatic 2D-to-3D conversion is an important application for filling the gap between the increasing number of 3D displays and the still scant 3D content. However, existing approaches have an excessive computational cost that complicates its practical application. In this paper, a fast automatic 2D-to-3D conversion technique is proposed, which uses a machine learning framework to infer the 3D structure of a query color image from a training database with color and depth images. Assuming that photometrically similar images have analogous 3D structures, a depth map is estimated by searching the most similar color images in the database, and fusing the corresponding depth maps. Large databases are desirable to achieve better results, but the computational cost also increases. A clustering-based hierarchical search using compact SURF descriptors to characterize images is proposed to drastically reduce search times. A significant computational time improvement has been obtained regarding other state-of-the-art approaches, maintaining the quality results.
Resumo:
Current fusion devices consist of multiple diagnostics and hundreds or even thousands of signals. This situation forces on multiple occasions to use distributed data acquisition systems as the best approach. In this type of distributed systems, one of the most important issues is the synchronization between signals, so that it is possible to have a temporal correlation as accurate as possible between the acquired samples of all channels. In last decades, many fusion devices use different types of video cameras to provide inside views of the vessel during operations and to monitor plasma behavior. The synchronization between each video frame and the rest of the different signals acquired from any other diagnostics is essential in order to know correctly the plasma evolution, since it is possible to analyze jointly all the information having accurate knowledge of their temporal correlation. The developed system described in this paper allows timestamping image frames in a real-time acquisition and processing system using 1588 clock distribution. The system has been implemented using FPGA based devices together with a 1588 synchronized timing card (see Fig.1). The solution is based on a previous system [1] that allows image acquisition and real-time image processing based on PXIe technology. This architecture is fully compatible with the ITER Fast Controllers [2] and offers integration with EPICS to control and monitor the entire system. However, this set-up is not able to timestamp the frames acquired since the frame grabber module does not present any type of timing input (IRIG-B, GPS, PTP). To solve this lack, an IEEE1588 PXI timing device its used to provide an accurate way to synchronize distributed data acquisition systems using the Precision Time Protocol (PTP) IEEE 1588 2008 standard. This local timing device can be connected to a master clock device for global synchronization. The timing device has a buffer timestamp for each PXI trigger line and requires tha- a software application assigns each frame the corresponding timestamp. The previous action is critical and cannot be achieved if the frame rate is high. To solve this problem, it has been designed a solution that distributes the clock from the IEEE 1588 timing card to all FlexRIO devices [3]. This solution uses two PXI trigger lines that provide the capacity to assign timestamps to every frame acquired and register events by hardware in a deterministic way. The system provides a solution for timestamping frames to synchronize them with the rest of the different signals.
Resumo:
Video analytics play a critical role in most recent traffic monitoring and driver assistance systems. In this context, the correct detection and classification of surrounding vehicles through image analysis has been the focus of extensive research in the last years. Most of the pieces of work reported for image-based vehicle verification make use of supervised classification approaches and resort to techniques, such as histograms of oriented gradients (HOG), principal component analysis (PCA), and Gabor filters, among others. Unfortunately, existing approaches are lacking in two respects: first, comparison between methods using a common body of work has not been addressed; second, no study of the combination potentiality of popular features for vehicle classification has been reported. In this study the performance of the different techniques is first reviewed and compared using a common public database. Then, the combination capabilities of these techniques are explored and a methodology is presented for the fusion of classifiers built upon them, taking into account also the vehicle pose. The study unveils the limitations of single-feature based classification and makes clear that fusion of classifiers is highly beneficial for vehicle verification.
Resumo:
La última década ha sido testigo de importantes avances en el campo de la tecnología de reconocimiento de voz. Los sistemas comerciales existentes actualmente poseen la capacidad de reconocer habla continua de múltiples locutores, consiguiendo valores aceptables de error, y sin la necesidad de realizar procedimientos explícitos de adaptación. A pesar del buen momento que vive esta tecnología, el reconocimiento de voz dista de ser un problema resuelto. La mayoría de estos sistemas de reconocimiento se ajustan a dominios particulares y su eficacia depende de manera significativa, entre otros muchos aspectos, de la similitud que exista entre el modelo de lenguaje utilizado y la tarea específica para la cual se está empleando. Esta dependencia cobra aún más importancia en aquellos escenarios en los cuales las propiedades estadísticas del lenguaje varían a lo largo del tiempo, como por ejemplo, en dominios de aplicación que involucren habla espontánea y múltiples temáticas. En los últimos años se ha evidenciado un constante esfuerzo por mejorar los sistemas de reconocimiento para tales dominios. Esto se ha hecho, entre otros muchos enfoques, a través de técnicas automáticas de adaptación. Estas técnicas son aplicadas a sistemas ya existentes, dado que exportar el sistema a una nueva tarea o dominio puede requerir tiempo a la vez que resultar costoso. Las técnicas de adaptación requieren fuentes adicionales de información, y en este sentido, el lenguaje hablado puede aportar algunas de ellas. El habla no sólo transmite un mensaje, también transmite información acerca del contexto en el cual se desarrolla la comunicación hablada (e.g. acerca del tema sobre el cual se está hablando). Por tanto, cuando nos comunicamos a través del habla, es posible identificar los elementos del lenguaje que caracterizan el contexto, y al mismo tiempo, rastrear los cambios que ocurren en estos elementos a lo largo del tiempo. Esta información podría ser capturada y aprovechada por medio de técnicas de recuperación de información (information retrieval) y de aprendizaje de máquina (machine learning). Esto podría permitirnos, dentro del desarrollo de mejores sistemas automáticos de reconocimiento de voz, mejorar la adaptación de modelos del lenguaje a las condiciones del contexto, y por tanto, robustecer al sistema de reconocimiento en dominios con condiciones variables (tales como variaciones potenciales en el vocabulario, el estilo y la temática). En este sentido, la principal contribución de esta Tesis es la propuesta y evaluación de un marco de contextualización motivado por el análisis temático y basado en la adaptación dinámica y no supervisada de modelos de lenguaje para el robustecimiento de un sistema automático de reconocimiento de voz. Esta adaptación toma como base distintos enfoque de los sistemas mencionados (de recuperación de información y aprendizaje de máquina) mediante los cuales buscamos identificar las temáticas sobre las cuales se está hablando en una grabación de audio. Dicha identificación, por lo tanto, permite realizar una adaptación del modelo de lenguaje de acuerdo a las condiciones del contexto. El marco de contextualización propuesto se puede dividir en dos sistemas principales: un sistema de identificación de temática y un sistema de adaptación dinámica de modelos de lenguaje. Esta Tesis puede describirse en detalle desde la perspectiva de las contribuciones particulares realizadas en cada uno de los campos que componen el marco propuesto: _ En lo referente al sistema de identificación de temática, nos hemos enfocado en aportar mejoras a las técnicas de pre-procesamiento de documentos, asimismo en contribuir a la definición de criterios más robustos para la selección de index-terms. – La eficiencia de los sistemas basados tanto en técnicas de recuperación de información como en técnicas de aprendizaje de máquina, y específicamente de aquellos sistemas que particularizan en la tarea de identificación de temática, depende, en gran medida, de los mecanismos de preprocesamiento que se aplican a los documentos. Entre las múltiples operaciones que hacen parte de un esquema de preprocesamiento, la selección adecuada de los términos de indexado (index-terms) es crucial para establecer relaciones semánticas y conceptuales entre los términos y los documentos. Este proceso también puede verse afectado, o bien por una mala elección de stopwords, o bien por la falta de precisión en la definición de reglas de lematización. En este sentido, en este trabajo comparamos y evaluamos diferentes criterios para el preprocesamiento de los documentos, así como también distintas estrategias para la selección de los index-terms. Esto nos permite no sólo reducir el tamaño de la estructura de indexación, sino también mejorar el proceso de identificación de temática. – Uno de los aspectos más importantes en cuanto al rendimiento de los sistemas de identificación de temática es la asignación de diferentes pesos a los términos de acuerdo a su contribución al contenido del documento. En este trabajo evaluamos y proponemos enfoques alternativos a los esquemas tradicionales de ponderado de términos (tales como tf-idf ) que nos permitan mejorar la especificidad de los términos, así como también discriminar mejor las temáticas de los documentos. _ Respecto a la adaptación dinámica de modelos de lenguaje, hemos dividimos el proceso de contextualización en varios pasos. – Para la generación de modelos de lenguaje basados en temática, proponemos dos tipos de enfoques: un enfoque supervisado y un enfoque no supervisado. En el primero de ellos nos basamos en las etiquetas de temática que originalmente acompañan a los documentos del corpus que empleamos. A partir de estas, agrupamos los documentos que forman parte de la misma temática y generamos modelos de lenguaje a partir de dichos grupos. Sin embargo, uno de los objetivos que se persigue en esta Tesis es evaluar si el uso de estas etiquetas para la generación de modelos es óptimo en términos del rendimiento del reconocedor. Por esta razón, nosotros proponemos un segundo enfoque, un enfoque no supervisado, en el cual el objetivo es agrupar, automáticamente, los documentos en clusters temáticos, basándonos en la similaridad semántica existente entre los documentos. Por medio de enfoques de agrupamiento conseguimos mejorar la cohesión conceptual y semántica en cada uno de los clusters, lo que a su vez nos permitió refinar los modelos de lenguaje basados en temática y mejorar el rendimiento del sistema de reconocimiento. – Desarrollamos diversas estrategias para generar un modelo de lenguaje dependiente del contexto. Nuestro objetivo es que este modelo refleje el contexto semántico del habla, i.e. las temáticas más relevantes que se están discutiendo. Este modelo es generado por medio de la interpolación lineal entre aquellos modelos de lenguaje basados en temática que estén relacionados con las temáticas más relevantes. La estimación de los pesos de interpolación está basada principalmente en el resultado del proceso de identificación de temática. – Finalmente, proponemos una metodología para la adaptación dinámica de un modelo de lenguaje general. El proceso de adaptación tiene en cuenta no sólo al modelo dependiente del contexto sino también a la información entregada por el proceso de identificación de temática. El esquema usado para la adaptación es una interpolación lineal entre el modelo general y el modelo dependiente de contexto. Estudiamos también diferentes enfoques para determinar los pesos de interpolación entre ambos modelos. Una vez definida la base teórica de nuestro marco de contextualización, proponemos su aplicación dentro de un sistema automático de reconocimiento de voz. Para esto, nos enfocamos en dos aspectos: la contextualización de los modelos de lenguaje empleados por el sistema y la incorporación de información semántica en el proceso de adaptación basado en temática. En esta Tesis proponemos un marco experimental basado en una arquitectura de reconocimiento en ‘dos etapas’. En la primera etapa, empleamos sistemas basados en técnicas de recuperación de información y aprendizaje de máquina para identificar las temáticas sobre las cuales se habla en una transcripción de un segmento de audio. Esta transcripción es generada por el sistema de reconocimiento empleando un modelo de lenguaje general. De acuerdo con la relevancia de las temáticas que han sido identificadas, se lleva a cabo la adaptación dinámica del modelo de lenguaje. En la segunda etapa de la arquitectura de reconocimiento, usamos este modelo adaptado para realizar de nuevo el reconocimiento del segmento de audio. Para determinar los beneficios del marco de trabajo propuesto, llevamos a cabo la evaluación de cada uno de los sistemas principales previamente mencionados. Esta evaluación es realizada sobre discursos en el dominio de la política usando la base de datos EPPS (European Parliamentary Plenary Sessions - Sesiones Plenarias del Parlamento Europeo) del proyecto europeo TC-STAR. Analizamos distintas métricas acerca del rendimiento de los sistemas y evaluamos las mejoras propuestas con respecto a los sistemas de referencia. ABSTRACT The last decade has witnessed major advances in speech recognition technology. Today’s commercial systems are able to recognize continuous speech from numerous speakers, with acceptable levels of error and without the need for an explicit adaptation procedure. Despite this progress, speech recognition is far from being a solved problem. Most of these systems are adjusted to a particular domain and their efficacy depends significantly, among many other aspects, on the similarity between the language model used and the task that is being addressed. This dependence is even more important in scenarios where the statistical properties of the language fluctuates throughout the time, for example, in application domains involving spontaneous and multitopic speech. Over the last years there has been an increasing effort in enhancing the speech recognition systems for such domains. This has been done, among other approaches, by means of techniques of automatic adaptation. These techniques are applied to the existing systems, specially since exporting the system to a new task or domain may be both time-consuming and expensive. Adaptation techniques require additional sources of information, and the spoken language could provide some of them. It must be considered that speech not only conveys a message, it also provides information on the context in which the spoken communication takes place (e.g. on the subject on which it is being talked about). Therefore, when we communicate through speech, it could be feasible to identify the elements of the language that characterize the context, and at the same time, to track the changes that occur in those elements over time. This information can be extracted and exploited through techniques of information retrieval and machine learning. This allows us, within the development of more robust speech recognition systems, to enhance the adaptation of language models to the conditions of the context, thus strengthening the recognition system for domains under changing conditions (such as potential variations in vocabulary, style and topic). In this sense, the main contribution of this Thesis is the proposal and evaluation of a framework of topic-motivated contextualization based on the dynamic and non-supervised adaptation of language models for the enhancement of an automatic speech recognition system. This adaptation is based on an combined approach (from the perspective of both information retrieval and machine learning fields) whereby we identify the topics that are being discussed in an audio recording. The topic identification, therefore, enables the system to perform an adaptation of the language model according to the contextual conditions. The proposed framework can be divided in two major systems: a topic identification system and a dynamic language model adaptation system. This Thesis can be outlined from the perspective of the particular contributions made in each of the fields that composes the proposed framework: _ Regarding the topic identification system, we have focused on the enhancement of the document preprocessing techniques in addition to contributing in the definition of more robust criteria for the selection of index-terms. – Within both information retrieval and machine learning based approaches, the efficiency of topic identification systems, depends, to a large extent, on the mechanisms of preprocessing applied to the documents. Among the many operations that encloses the preprocessing procedures, an adequate selection of index-terms is critical to establish conceptual and semantic relationships between terms and documents. This process might also be weakened by a poor choice of stopwords or lack of precision in defining stemming rules. In this regard we compare and evaluate different criteria for preprocessing the documents, as well as for improving the selection of the index-terms. This allows us to not only reduce the size of the indexing structure but also to strengthen the topic identification process. – One of the most crucial aspects, in relation to the performance of topic identification systems, is to assign different weights to different terms depending on their contribution to the content of the document. In this sense we evaluate and propose alternative approaches to traditional weighting schemes (such as tf-idf ) that allow us to improve the specificity of terms, and to better identify the topics that are related to documents. _ Regarding the dynamic language model adaptation, we divide the contextualization process into different steps. – We propose supervised and unsupervised approaches for the generation of topic-based language models. The first of them is intended to generate topic-based language models by grouping the documents, in the training set, according to the original topic labels of the corpus. Nevertheless, a goal of this Thesis is to evaluate whether or not the use of these labels to generate language models is optimal in terms of recognition accuracy. For this reason, we propose a second approach, an unsupervised one, in which the objective is to group the data in the training set into automatic topic clusters based on the semantic similarity between the documents. By means of clustering approaches we expect to obtain a more cohesive association of the documents that are related by similar concepts, thus improving the coverage of the topic-based language models and enhancing the performance of the recognition system. – We develop various strategies in order to create a context-dependent language model. Our aim is that this model reflects the semantic context of the current utterance, i.e. the most relevant topics that are being discussed. This model is generated by means of a linear interpolation between the topic-based language models related to the most relevant topics. The estimation of the interpolation weights is based mainly on the outcome of the topic identification process. – Finally, we propose a methodology for the dynamic adaptation of a background language model. The adaptation process takes into account the context-dependent model as well as the information provided by the topic identification process. The scheme used for the adaptation is a linear interpolation between the background model and the context-dependent one. We also study different approaches to determine the interpolation weights used in this adaptation scheme. Once we defined the basis of our topic-motivated contextualization framework, we propose its application into an automatic speech recognition system. We focus on two aspects: the contextualization of the language models used by the system, and the incorporation of semantic-related information into a topic-based adaptation process. To achieve this, we propose an experimental framework based in ‘a two stages’ recognition architecture. In the first stage of the architecture, Information Retrieval and Machine Learning techniques are used to identify the topics in a transcription of an audio segment. This transcription is generated by the recognition system using a background language model. According to the confidence on the topics that have been identified, the dynamic language model adaptation is carried out. In the second stage of the recognition architecture, an adapted language model is used to re-decode the utterance. To test the benefits of the proposed framework, we carry out the evaluation of each of the major systems aforementioned. The evaluation is conducted on speeches of political domain using the EPPS (European Parliamentary Plenary Sessions) database from the European TC-STAR project. We analyse several performance metrics that allow us to compare the improvements of the proposed systems against the baseline ones.
Resumo:
Genes that are characteristic of only certain strains of a bacterial species can be of great biologic interest. Here we describe a PCR-based subtractive hybridization method for efficiently detecting such DNAs and apply it to the gastric pathogen Helicobacter pylori. Eighteen DNAs specific to a monkey-colonizing strain (J166) were obtained by subtractive hybridization against an unrelated strain whose genome has been fully sequenced (26695). Seven J166-specific clones had no DNA sequence match to the 26695 genome, and 11 other clones were mixed, with adjacent patches that did and did not match any sequences in 26695. At the protein level, seven clones had homology to putative DNA restriction-modification enzymes, and two had homology to putative metabolic enzymes. Nine others had no database match with proteins of assigned function. PCR tests of 13 unrelated H. pylori strains by using primers specific for 12 subtracted clones and complementary Southern blot hybridizations indicated that these DNAs are highly polymorphic in the H. pylori population, with each strain yielding a different pattern of gene-specific PCR amplification. The search for polymorphic DNAs, as described here, should help identify previously unknown virulence genes in pathogens and provide new insights into microbial genetic diversity and evolution.
Resumo:
Single photon emission with computed tomography (SPECT) hexamethylphenylethyleneamineoxime technetium-99 images were analyzed by an optimal interpolative neural network (OINN) algorithm to determine whether the network could discriminate among clinically diagnosed groups of elderly normal, Alzheimer disease (AD), and vascular dementia (VD) subjects. After initial image preprocessing and registration, image features were obtained that were representative of the mean regional tissue uptake. These features were extracted from a given image by averaging the intensities over various regions defined by suitable masks. After training, the network classified independent trials of patients whose clinical diagnoses conformed to published criteria for probable AD or probable/possible VD. For the SPECT data used in the current tests, the OINN agreement was 80 and 86% for probable AD and probable/possible VD, respectively. These results suggest that artificial neural network methods offer potential in diagnoses from brain images and possibly in other areas of scientific research where complex patterns of data may have scientifically meaningful groupings that are not easily identifiable by the researcher.
Resumo:
Falls are one of the greatest threats to elderly health in their daily living routines and activities. Therefore, it is very important to detect falls of an elderly in a timely and accurate manner, so that immediate response and proper care can be provided, by sending fall alarms to caregivers. Radar is an effective non-intrusive sensing modality which is well suited for this purpose, which can detect human motions in all types of environments, penetrate walls and fabrics, preserve privacy, and is insensitive to lighting conditions. Micro-Doppler features are utilized in radar signal corresponding to human body motions and gait to detect falls using a narrowband pulse-Doppler radar. Human motions cause time-varying Doppler signatures, which are analyzed using time-frequency representations and matching pursuit decomposition (MPD) for feature extraction and fall detection. The extracted features include MPD features and the principal components of the time-frequency signal representations. To analyze the sequential characteristics of typical falls, the extracted features are used for training and testing hidden Markov models (HMM) in different falling scenarios. Experimental results demonstrate that the proposed algorithm and method achieve fast and accurate fall detections. The risk of falls increases sharply when the elderly or patients try to exit beds. Thus, if a bed exit can be detected at an early stage of this motion, the related injuries can be prevented with a high probability. To detect bed exit for fall prevention, the trajectory of head movements is used for recognize such human motion. A head detector is trained using the histogram of oriented gradient (HOG) features of the head and shoulder areas from recorded bed exit images. A data association algorithm is applied on the head detection results to eliminate head detection false alarms. Then the three dimensional (3D) head trajectories are constructed by matching scale-invariant feature transform (SIFT) keypoints in the detected head areas from both the left and right stereo images. The extracted 3D head trajectories are used for training and testing an HMM based classifier for recognizing bed exit activities. The results of the classifier are presented and discussed in the thesis, which demonstrates the effectiveness of the proposed stereo vision based bed exit detection approach.
Resumo:
Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.