886 resultados para Constructive Genetic Algorithm
Resumo:
Time delay is an important aspect in the modelling of genetic regulation due to slow biochemical reactions such as gene transcription and translation, and protein diffusion between the cytosol and nucleus. In this paper we introduce a general mathematical formalism via stochastic delay differential equations for describing time delays in genetic regulatory networks. Based on recent developments with the delay stochastic simulation algorithm, the delay chemical masterequation and the delay reaction rate equation are developed for describing biological reactions with time delay, which leads to stochastic delay differential equations derived from the Langevin approach. Two simple genetic regulatory networks are used to study the impact of' intrinsic noise on the system dynamics where there are delays. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Genetic parameters for performance traits in a pig population were estimated using a multi-trait derivative-free REML algorithm. The 2590 total data included 922 restrictively fed male and 1668 ad libitum fed female records. Estimates of heritability (standard error in parentheses) were 0.25 (0.03), 0.15 (0.03), and 0.30 (0.05) for lifetime daily gain, test daily gain, and P2-fat depth in males, respectively; and 0.27 (0.04) and 0.38 (0.05) for average daily gain and P2-fat depth in females, respectively. The genetic correlation between P2-fat depth and test daily gain in males was -0.17 (0.06) and between P2-fat and lifetime average daily gain in females 0.44 (0.09). Genetic correlations between sexes were 0.71 (0.11) for average daily gain and -0.30 (0.10) for P2-fat depth. Genetic response per standard deviation of selection on an index combining all traits was predicted at $AU120 per sow per year. Responses in daily gain and backfat were expected to be higher when using only male selection than when using only female selection. Selection for growth rate in males will improve growth rate and carcass leanness simultaneously.
Resumo:
Boolean models of genetic regulatory networks (GRNs) have been shown to exhibit many of the characteristic dynamics of real GRNs, with gene expression patterns settling to point attractors or limit cycles, or displaying chaotic behaviour, depending upon the connectivity of the network and the relative proportions of excitatory and inhibitory interactions. This range of behaviours is only apparent, however, when the nodes of the GRN are updated synchronously, a biologically implausible state of affairs. In this paper we demonstrate that evolution can produce GRNs with interesting dynamics under an asynchronous update scheme. We use an Artificial Genome to generate networks which exhibit limit cycle dynamics when updated synchronously, but collapse to a point attractor when updated asynchronously. Using a hill climbing algorithm the networks are then evolved using a fitness function which rewards patterns of gene expression which revisit as many previously seen states as possible. The final networks exhibit “fuzzy limit cycle” dynamics when updated asynchronously.
Resumo:
We describe a network module detection approach which combines a rapid and robust clustering algorithm with an objective measure of the coherence of the modules identified. The approach is applied to the network of genetic regulatory interactions surrounding the tumor suppressor gene p53. This algorithm identifies ten clusters in the p53 network, which are visually coherent and biologically plausible.
Resumo:
Time-course experiments with microarrays are often used to study dynamic biological systems and genetic regulatory networks (GRNs) that model how genes influence each other in cell-level development of organisms. The inference for GRNs provides important insights into the fundamental biological processes such as growth and is useful in disease diagnosis and genomic drug design. Due to the experimental design, multilevel data hierarchies are often present in time-course gene expression data. Most existing methods, however, ignore the dependency of the expression measurements over time and the correlation among gene expression profiles. Such independence assumptions violate regulatory interactions and can result in overlooking certain important subject effects and lead to spurious inference for regulatory networks or mechanisms. In this paper, a multilevel mixed-effects model is adopted to incorporate data hierarchies in the analysis of time-course data, where temporal and subject effects are both assumed to be random. The method starts with the clustering of genes by fitting the mixture model within the multilevel random-effects model framework using the expectation-maximization (EM) algorithm. The network of regulatory interactions is then determined by searching for regulatory control elements (activators and inhibitors) shared by the clusters of co-expressed genes, based on a time-lagged correlation coefficients measurement. The method is applied to two real time-course datasets from the budding yeast (Saccharomyces cerevisiae) genome. It is shown that the proposed method provides clusters of cell-cycle regulated genes that are supported by existing gene function annotations, and hence enables inference on regulatory interactions for the genetic network.
Resumo:
The storage capacity of multilayer networks with overlapping receptive fields is investigated for a constructive algorithm within a one-step replica symmetry breaking (RSB) treatment. We find that the storage capacity increases logarithmically with the number of hidden units K without saturating the Mitchison-Durbin bound. The slope of the logarithmic increase decays exponentionally with the stability with which the patterns have been stored.
Resumo:
This thesis addresses the problem of offline identification of salient patterns in genetic programming individuals. It discusses the main issues related to automatic pattern identification systems, namely that these (a) should help in understanding the final solutions of the evolutionary run, (b) should give insight into the course of evolution and (c) should be helpful in optimizing future runs. Moreover, it proposes an algorithm, Extended Pattern Growing Algorithm ([E]PGA) to extract, filter and sort the identified patterns so that these fulfill as many as possible of the following criteria: (a) they are representative for the evolutionary run and/or search space, (b) they are human-friendly and (c) their numbers are within reasonable limits. The results are demonstrated on six problems from different domains.
Resumo:
In this paper we study the generation of lace knitting stitch patterns by using genetic programming. We devise a genetic representation of knitting charts that accurately reflects their usage for hand knitting the pattern. We apply a basic evolutionary algorithm for generating the patterns, where the key of success is evaluation. We propose automatic evaluation of the patterns, without interaction with the user. We present some patterns generated by the method and then discuss further possibilities for bringing automatic evaluation closer to human evaluation. Copyright 2007 ACM.
Resumo:
Four bar mechanisms are basic components of many important mechanical devices. The kinematic synthesis of four bar mechanisms is a difficult design problem. A novel method that combines the genetic programming and decision tree learning methods is presented. We give a structural description for the class of mechanisms that produce desired coupler curves. Constructive induction is used to find and characterize feasible regions of the design space. Decision trees constitute the learning engine, and the new features are created by genetic programming.
Resumo:
In the paper learning algorithm for adjusting weight coefficients of the Cascade Neo-Fuzzy Neural Network (CNFNN) in sequential mode is introduced. Concerned architecture has the similar structure with the Cascade-Correlation Learning Architecture proposed by S.E. Fahlman and C. Lebiere, but differs from it in type of artificial neurons. CNFNN consists of neo-fuzzy neurons, which can be adjusted using high-speed linear learning procedures. Proposed CNFNN is characterized by high learning rate, low size of learning sample and its operations can be described by fuzzy linguistic “if-then” rules providing “transparency” of received results, as compared with conventional neural networks. Using of online learning algorithm allows to process input data sequentially in real time mode.
Resumo:
The correlated probit model is frequently used for multiple ordered data since it allows to incorporate seamlessly different correlation structures. The estimation of the probit model parameters based on direct maximization of the limited information maximum likelihood is a numerically intensive procedure. We propose an extension of the EM algorithm for obtaining maximum likelihood estimates for a correlated probit model for multiple ordinal outcomes. The algorithm is implemented in the free software environment for statistical computing and graphics R. We present two simulation studies to examine the performance of the developed algorithm. We apply the model to data on 121 women with cervical or endometrial cancer. Patients developed normal tissue reactions as a result of post-operative external beam pelvic radiotherapy. In this work we focused on modeling the effects of a genetic factor on early skin and early urogenital tissue reactions and on assessing the strength of association between the two types of reactions. We established that there was an association between skin reactions and polymorphism XRCC3 codon 241 (C>T) (rs861539) and that skin and urogenital reactions were positively correlated. ACM Computing Classification System (1998): G.3.
Resumo:
Postprint
Resumo:
The incidence of melanoma has increased rapidly over the past 30 years, and the disease is now the sixth most common cancer among men and women in the U.K. Many patients are diagnosed with or develop metastatic disease, and survival is substantially reduced in these patients. Mutations in the BRAF gene have been identified as key drivers of melanoma cells and are found in around 50% of cutaneous melanomas. Vemurafenib (Zelboraf(®) ; Roche Molecular Systems Inc., Pleasanton, CA, U.S.A.) is the first licensed inhibitor of mutated BRAF, and offers a new first-line option for patients with unresectable or metastatic melanoma who harbour BRAF mutations. Vemurafenib was developed in conjunction with a companion diagnostic, the cobas(®) 4800 BRAF V600 Mutation Test. The purpose of this paper is to make evidence-based recommendations to facilitate the implementation of BRAF mutation testing and targeted therapy in patients with metastatic melanoma in the U.K. The recommendations are the result of a meeting of an expert panel and have been reviewed by melanoma specialists and representatives of the National Cancer Research Network Clinical Study Group on behalf of the wider melanoma community. This article is intended to be a starting point for practical advice and recommendations, which will no doubt be updated as we gain further experience in personalizing therapy for patients with melanoma.
Resumo:
Habitat fragmentation and the consequently the loss of connectivity between populations can reduce the individuals interchange and gene flow, increasing the chances of inbreeding, and the increase the risk of local extinction. Landscape genetics is providing more and better tools to identify genetic barriers.. To our knowledge, no comparison of methods in terms of consistency has been made with observed data and species with low dispersal ability. The aim of this study is to examine the consistency of the results of five methods to detect barriers to gene flow in a Mediterranean pine vole population Microtus duodecimcostatus: F-statistics estimations, Non-Bayesian clustering, Bayesian clustering, Boundary detection and Simple/Partial Mantel tests. All methods were consistent in detecting the stream as a non-genetic barrier. However, no consistency in results among the methods were found regarding the role of the highway as a genetic barrier. Fst, Bayesian clustering assignment test and Partial Mantel test identifyed the highway as a filter to individual interchange. The Mantel tests were the most sensitive method. Boundary detection method (Monmonier’s Algorithm) and Non-Bayesian approaches did not detect any genetic differentiation of the pine vole due to the highway. Based on our findings we recommend that the genetic barrier detection in low dispersal ability populations should be analyzed with multiple methods such as Mantel tests, Bayesian clustering approaches because they show more sensibility in those scenarios and with boundary detection methods by having the aim of detect drastic changes in a variable of interest between the closest individuals. Although simulation studies highlight the weaknesses and the strengths of each method and the factors that promote some results, tests with real data are needed to increase the effectiveness of genetic barrier detection.