949 resultados para Concentration-time response modelling
Resumo:
This paper proposes some variants of Temporal Defeasible Logic (TDL) to reason about normative modifications. These variants make it possible to differentiate cases in which, for example, modifications at some time change legal rules but their conclusions persist afterwards from cases where also their conclusions are blocked.
Resumo:
The present study details new turbulence field measurements conducted continuously at high frequency for 50 hours in the upper zone of a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was used, and the signal was post-processed thoroughly. The suspended sediment concentration wad further deduced from the acoustic backscatter intensity. The field data set demonstrated some unique flow features of the upstream estuarine zone, including some low-frequency longitudinal oscillations induced by internal and external resonance. A striking feature of the data set is the large fluctuations in all turbulence properties and suspended sediment concentration during the tidal cycle. This feature has been rarely documented.
Resumo:
Transient response of a CSTR containing porous catalyst pellets is analyzed theoretically using a matched asymptotic expansion technique. This singular perturbation technique leads directly to the conditions under which the minima of reservoir concentration occur. The existence of the minima may be used to estimate some inherent parameters of the catalyst pellet.
Resumo:
Previous work has identified several short-comings in the ability of four spring wheat and one barley model to simulate crop processes and resource utilization. This can have important implications when such models are used within systems models where final soil water and nitrogen conditions of one crop define the starting conditions of the following crop. In an attempt to overcome these limitations and to reconcile a range of modelling approaches, existing model components that worked demonstrably well were combined with new components for aspects where existing capabilities were inadequate. This resulted in the Integrated Wheat Model (I_WHEAT), which was developed as a module of the cropping systems model APSIM. To increase predictive capability of the model, process detail was reduced, where possible, by replacing groups of processes with conservative, biologically meaningful parameters. I_WHEAT does not contain a soil water or soil nitrogen balance. These are present as other modules of APSIM. In I_WHEAT, yield is simulated using a linear increase in harvest index whereby nitrogen or water limitations can lead to early termination of grainfilling and hence cessation of harvest index increase. Dry matter increase is calculated either from the amount of intercepted radiation and radiation conversion efficiency or from the amount of water transpired and transpiration efficiency, depending on the most limiting resource. Leaf area and tiller formation are calculated from thermal time and a cultivar specific phyllochron interval. Nitrogen limitation first reduces leaf area and then affects radiation conversion efficiency as it becomes more severe. Water or nitrogen limitations result in reduced leaf expansion, accelerated leaf senescence or tiller death. This reduces the radiation load on the crop canopy (i.e. demand for water) and can make nitrogen available for translocation to other organs. Sensitive feedbacks between light interception and dry matter accumulation are avoided by having environmental effects acting directly on leaf area development, rather than via biomass production. This makes the model more stable across environments without losing the interactions between the different external influences. When comparing model output with models tested previously using data from a wide range of agro-climatic conditions, yield and biomass predictions were equal to the best of those models, but improvements could be demonstrated for simulating leaf area dynamics in response to water and nitrogen supply, kernel nitrogen content, and total water and nitrogen use. I_WHEAT does not require calibration for any of the environments tested. Further model improvement should concentrate on improving phenology simulations, a more thorough derivation of coefficients to describe leaf area development and a better quantification of some processes related to nitrogen dynamics. (C) 1998 Elsevier Science B.V.
Resumo:
A dissociation between two putative measures of resource allocation skin conductance responding, and secondary task reaction time (RT), has been observed during auditory discrimination tasks. Four experiments investigated the time course of the dissociation effect with a visual discrimination task. participants were presented with circles and ellipses and instructed to count the number of longer-than-usual presentations of one shape (task-relevant) and to ignore presentations of the other shape (task-irrelevant). Concurrent with this task, participants made a speeded motor response to an auditory probe. Experiment 1 showed that skin conductance responses were larger during task-relevant stimuli than during task-irrelevant stimuli, whereas RT to probes presented at 150 ms following shape onset was slower during task-irrelevant stimuli. Experiments 2 to 4 found slower RT during task-irrelevant stimuli at probes presented at 300 ms before shape onset until 150 ms following shape onset. At probes presented 3,000 and 4,000 ms following shape onset probe RT was slower during task-relevant stimuli. The similarities between the observed time course and the so-called psychological refractory period (PRF) effect are discussed.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
A multisegment percolation system (MSPS) consisting of 25 individual collection wells was constructed to study the effects of localised soil heterogeneities on the transport of solutes in the vadose zone. In particular, this paper discusses the transport of water and nutrients (NO3-, Cl-, PO43-) through structurally stable, free-draining agricultural soil from Victoria, Australia. A solution of nutrients was irrigated onto the surface of a large undisturbed soil core over a 12-h period. This was followed by a continuous irrigation of distilled water at a fate which did not cause pending for a further 18 days. During this time, the volume of leachate and the concentration of nutrients in the leachate of each well were measured. Very significant variation in drainage patterns across a small spatial scale was observed. Leaching of nitrate-nitrogen and chloride from the core occurred two days after initial application. However, less than 1% of the total applied phosphate-phosphorus leached from the soil during the 18-day experiment, indicating strong adsorption. Our experiments indicate considerable heterogeneity in water flow patterns and solute leaching on a small spatial scale. These results have significant ramifications for modelling solute transport and predicting nutrient loadings on a larger scale.
Resumo:
This note considers the value of surface response equations which can be used to calculate critical values for a range of unit root and cointegration tests popular in applied economic research.
Resumo:
The activity of alpha-conotoxin (alpha-CTX) lml, from the vermivorous marine snail Conus imperialis, has been studied on mammalian nicotinic receptors on bovine chromaffin cells and at the rat neuromuscular junction. Synthetic alpha-CTX lml was a potent inhibitor of the neuronal[ nicotinic response in bovine adrenal chromaffin cells (IC50 = 2.5 mu M, log IC50 = 0.4 +/- 0.07), showing competitive inhibition of nicotine-evoked catecholamine secretion. (alpha-CTX lml also inhibited nicotine-evoked Ca-45(2+) uptake but not Ca-45(2+) uptake stimulated by 56 mM Kr. In contrast, alpha-CTX lml had no effect at the neuromuscular junction over the concentration range 1-20 mu M. Bovine chromaffin cells are known to contain the alpha 3 beta 4, alpha 7, and (possibly) alpha 3 beta 4 alpha 5 subtypes. However, the secretory response of bovine chromaffin cells is not inhibited by alpha-bungarotoxin, indicating that alpha 7 nicotinic receptors are not involved. We propose that alpha-CTX lml interacts selectively with the functional (alpha 3 beta 4 or alpha 3 beta 4 alpha 5) nicotinic acetylcholine receptor to inhibit the neuronal-type nicotinic response in bovine chromaffin cells.
Resumo:
We use the finite element method to solve reactive mass transport problems in fluid-saturated porous media. In particular, we discuss the mathematical expression of the chemical reaction terms involved in the mass transport equations for an isothermal, non-equilibrium chemical reaction. It has turned out that the Arrhenius law in chemistry is a good mathematical expression for such non-equilibrium chemical reactions especially from the computational point of view. Using the finite element method and the Arrhenius law, we investigate the distributions of PH (i.e. the concentration of H+) and the relevant reactive species in a groundwater system. Although the main focus of this study is on the contaminant transport problems in groundwater systems, the related numerical techniques and principles are equally applicable to the orebody formation problems in the geosciences. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
The physical nonequilibrium of solute concentration resulting from preferential now of soil water has often led to models where the soil is partitioned into two regions: preferential flow paths, where solute transport occurs mainly by advection, and the remaining region, where significant solute transport occurs through diffusive exchange with the flow paths. These two-region models commonly ignore concentration gradients within the regions. Our objective was to develop a simple model to assess the influence of concentration gradients on solute transport and to compare model results with experiments conducted on structured materials. The model calculates the distribution of solutes in a single spherical aggregate surrounded by preferential now paths and subjected to alternating boundary conditions representing either an exchange of solutes between the two regions (a wet period) or no exchange but redistribution of solutes within the aggregate (a dry period). The key parameter in the model is the aggregate radius, which defines the diffusive time scales. We conducted intermittent leaching experiments on a column of packed porous spheres and on a large (300 mm long by 216 mm diameter) undisturbed field soil core to test the validity of the model and its application to field soils. Alternating wet and dry periods enhanced leaching by up to 20% for this soil, which was consistent with the model's prediction, given a fitted equivalent aggregate radius of 1.8 cm, If similar results are obtained for other soils, use of alternating wet and dry periods could improve management of solutes, for example in salinity control and in soil remediation.
Resumo:
Gauging data are available from numerous streams throughout Australia, and these data provide a basis for historical analysis of geomorphic change in stream channels in response to both natural phenomena and human activities. We present a simple method for analysis of these data, and a briefcase study of an application to channel change in the Tully River, in the humid tropics of north Queensland. The analysis suggests that this channel has narrowed and deepened, rather than aggraded: channel aggradation was expected, given the intensification of land use in the catchment, upstream of the gauging station. Limitations of the method relate to the time periods over which stream gauging occurred; the spatial patterns of stream gauging sites; the quality and consistency of data collection; and the availability of concurrent land-use histories on which to base the interpretation of the channel changes.
Resumo:
We use the finite element method to model and predict the dissipative structures of chemical species for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. In particular, we explore the conditions under which dissipative structures of the species may exist in the Brusselator type of nonequilibrium chemical reaction. Since this is the first time the finite element method and related strategies have been used to study the chemical instability problems in a fluid-saturated porous medium, it is essential to validate the method and strategies before they are put into application. For this purpose, we have rigorously derived the analytical solutions for dissipative structures of chemical species in a benchmark problem, which geometrically is a square. Comparison of the numerical solutions with the analytical ones demonstrates that the proposed numerical method and strategy are robust enough to solve chemical instability problems in a fluid-saturated porous medium. Finally, the related numerical results from two application examples indicate that both the regime and the magnitude of pore-fluid flow have significant effects on the nature of the dissipative structures that developed for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. The motivation for this study is that self-organization under conditions of pore-fluid flow in a porous medium is a potential mechanism of the orebody formation and mineralization in the upper crust of the Earth. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity sets in. We will show how this 'quasi' stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of a dual chain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity for absorbing Markov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.
Resumo:
This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.