972 resultados para Computer algorithms -- TFM
Resumo:
BACKGROUND: Clinical practice does not always reflect best practice and evidence, partly because of unconscious acts of omission, information overload, or inaccessible information. Reminders may help clinicians overcome these problems by prompting the doctor to recall information that they already know or would be expected to know and by providing information or guidance in a more accessible and relevant format, at a particularly appropriate time. OBJECTIVES: To evaluate the effects of reminders automatically generated through a computerized system and delivered on paper to healthcare professionals on processes of care (related to healthcare professionals' practice) and outcomes of care (related to patients' health condition). SEARCH METHODS: For this update the EPOC Trials Search Co-ordinator searched the following databases between June 11-19, 2012: The Cochrane Central Register of Controlled Trials (CENTRAL) and Cochrane Library (Economics, Methods, and Health Technology Assessment sections), Issue 6, 2012; MEDLINE, OVID (1946- ), Daily Update, and In-process; EMBASE, Ovid (1947- ); CINAHL, EbscoHost (1980- ); EPOC Specialised Register, Reference Manager, and INSPEC, Engineering Village. The authors reviewed reference lists of related reviews and studies. SELECTION CRITERIA: We included individual or cluster-randomized controlled trials (RCTs) and non-randomized controlled trials (NRCTs) that evaluated the impact of computer-generated reminders delivered on paper to healthcare professionals on processes and/or outcomes of care. DATA COLLECTION AND ANALYSIS: Review authors working in pairs independently screened studies for eligibility and abstracted data. We contacted authors to obtain important missing information for studies that were published within the last 10 years. For each study, we extracted the primary outcome when it was defined or calculated the median effect size across all reported outcomes. We then calculated the median absolute improvement and interquartile range (IQR) in process adherence across included studies using the primary outcome or median outcome as representative outcome. MAIN RESULTS: In the 32 included studies, computer-generated reminders delivered on paper to healthcare professionals achieved moderate improvement in professional practices, with a median improvement of processes of care of 7.0% (IQR: 3.9% to 16.4%). Implementing reminders alone improved care by 11.2% (IQR 6.5% to 19.6%) compared with usual care, while implementing reminders in addition to another intervention improved care by 4.0% only (IQR 3.0% to 6.0%) compared with the other intervention. The quality of evidence for these comparisons was rated as moderate according to the GRADE approach. Two reminder features were associated with larger effect sizes: providing space on the reminder for provider to enter a response (median 13.7% versus 4.3% for no response, P value = 0.01) and providing an explanation of the content or advice on the reminder (median 12.0% versus 4.2% for no explanation, P value = 0.02). Median improvement in processes of care also differed according to the behaviour the reminder targeted: for instance, reminders to vaccinate improved processes of care by 13.1% (IQR 12.2% to 20.7%) compared with other targeted behaviours. In the only study that had sufficient power to detect a clinically significant effect on outcomes of care, reminders were not associated with significant improvements. AUTHORS' CONCLUSIONS: There is moderate quality evidence that computer-generated reminders delivered on paper to healthcare professionals achieve moderate improvement in process of care. Two characteristics emerged as significant predictors of improvement: providing space on the reminder for a response from the clinician and providing an explanation of the reminder's content or advice. The heterogeneity of the reminder interventions included in this review also suggests that reminders can improve care in various settings under various conditions.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
Microstructure imaging from diffusion magnetic resonance (MR) data represents an invaluable tool to study non-invasively the morphology of tissues and to provide a biological insight into their microstructural organization. In recent years, a variety of biophysical models have been proposed to associate particular patterns observed in the measured signal with specific microstructural properties of the neuronal tissue, such as axon diameter and fiber density. Despite very appealing results showing that the estimated microstructure indices agree very well with histological examinations, existing techniques require computationally very expensive non-linear procedures to fit the models to the data which, in practice, demand the use of powerful computer clusters for large-scale applications. In this work, we present a general framework for Accelerated Microstructure Imaging via Convex Optimization (AMICO) and show how to re-formulate this class of techniques as convenient linear systems which, then, can be efficiently solved using very fast algorithms. We demonstrate this linearization of the fitting problem for two specific models, i.e. ActiveAx and NODDI, providing a very attractive alternative for parameter estimation in those techniques; however, the AMICO framework is general and flexible enough to work also for the wider space of microstructure imaging methods. Results demonstrate that AMICO represents an effective means to accelerate the fit of existing techniques drastically (up to four orders of magnitude faster) while preserving accuracy and precision in the estimated model parameters (correlation above 0.9). We believe that the availability of such ultrafast algorithms will help to accelerate the spread of microstructure imaging to larger cohorts of patients and to study a wider spectrum of neurological disorders.
Resumo:
A computer-aided method to improve the thickness uniformity attainable when coating multiple substrates inside a thermal evaporation physical vapor deposition unit is presented. The study is developed for the classical spherical (dome-shaped) calotte and also for a plane sector reversible holder setup. This second arrangement is very useful for coating both sides of the substrate, such as antireflection multilayers on lenses. The design of static correcting shutters for both kinds of configurations is also discussed. Some results of using the method are presented as an illustration.
Resumo:
Neuronal oscillations are an important aspect of EEG recordings. These oscillations are supposed to be involved in several cognitive mechanisms. For instance, oscillatory activity is considered a key component for the top-down control of perception. However, measuring this activity and its influence requires precise extraction of frequency components. This processing is not straightforward. Particularly, difficulties with extracting oscillations arise due to their time-varying characteristics. Moreover, when phase information is needed, it is of the utmost importance to extract narrow-band signals. This paper presents a novel method using adaptive filters for tracking and extracting these time-varying oscillations. This scheme is designed to maximize the oscillatory behavior at the output of the adaptive filter. It is then capable of tracking an oscillation and describing its temporal evolution even during low amplitude time segments. Moreover, this method can be extended in order to track several oscillations simultaneously and to use multiple signals. These two extensions are particularly relevant in the framework of EEG data processing, where oscillations are active at the same time in different frequency bands and signals are recorded with multiple sensors. The presented tracking scheme is first tested with synthetic signals in order to highlight its capabilities. Then it is applied to data recorded during a visual shape discrimination experiment for assessing its usefulness during EEG processing and in detecting functionally relevant changes. This method is an interesting additional processing step for providing alternative information compared to classical time-frequency analyses and for improving the detection and analysis of cross-frequency couplings.
Resumo:
Both structural and dynamical properties of 7Li at 470 and 843 K are studied by molecular dynamics simulation and the results are comapred with the available experimental data. Two effective interatomic potentials are used, i.e., a potential derived from the Ashcroft pseudopotential [Phys. Lett. 23, 48 (1966)] and a recently proposed potential deduced from the neutral pseudoatom method [J. Phys.: Condens. Matter 5, 4283 (1993)]. Although the shape of the two potential functions is very different, the majority of the properties calculated from them are very similar. The differences among the results using the two interaction models are carefully discussed.
Resumo:
BACKGROUND/AIM: Raloxifene is the first selective estrogen receptor modulator that has been approved for the treatment and prevention of osteoporosis in postmenopausal women in Europe and in the US. Although raloxifene reduces the risk of invasive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer, it is approved in that indication in the US but not in the EU. The aim was to characterize the clinical profiles of postmenopausal women expected to benefit most from therapy with raloxifene based on published scientific evidence to date. METHODS: Key individual patient characteristics relevant to the prescription of raloxifene in daily practice were defined by a board of Swiss experts in the fields of menopause and metabolic bone diseases and linked to published scientific evidence. Consensus was reached about translating these insights into daily practice. RESULTS: Through estrogen agonistic effects on bone, raloxifene reduces biochemical markers of bone turnover to premenopausal levels, increases bone mineral density (BMD) at the lumbar spine, proximal femur, and total body, and reduces vertebral fracture risk in women with osteopenia or osteoporosis with and without prevalent vertebral fracture. Through estrogen antagonistic effects on breast tissue, raloxifene reduces the risk of invasive estrogen-receptor positive breast cancer in postmenopausal women with osteoporosis and in postmenopausal women at high risk for invasive breast cancer. Finally, raloxifene increases the incidence of hot flushes, the risk of venous thromboembolic events, and the risk of fatal stroke in postmenopausal women at increased risk for coronary heart disease. Postmenopausal women in whom the use of raloxifene is considered can be categorized in a 2 × 2 matrix reflecting their bone status (osteopenic or osteoporotic based on their BMD T-score by dual energy X-ray absorptiometry) and their breast cancer risk (low or high based on the modified Gail model). Women at high risk of breast cancer should be considered for treatment with raloxifene. CONCLUSION: Postmenopausal women between 50 and 70 years of age without climacteric symptoms with either osteopenia or osteoporosis should be evaluated with regard to their breast cancer risk and considered for treatment with raloxifene within the framework of its contraindications and precautions.
Resumo:
PURPOSE: To objectively characterize different heart tissues from functional and viability images provided by composite-strain-encoding (C-SENC) MRI. MATERIALS AND METHODS: C-SENC is a new MRI technique for simultaneously acquiring cardiac functional and viability images. In this work, an unsupervised multi-stage fuzzy clustering method is proposed to identify different heart tissues in the C-SENC images. The method is based on sequential application of the fuzzy c-means (FCM) and iterative self-organizing data (ISODATA) clustering algorithms. The proposed method is tested on simulated heart images and on images from nine patients with and without myocardial infarction (MI). The resulting clustered images are compared with MRI delayed-enhancement (DE) viability images for determining MI. Also, Bland-Altman analysis is conducted between the two methods. RESULTS: Normal myocardium, infarcted myocardium, and blood are correctly identified using the proposed method. The clustered images correctly identified 90 +/- 4% of the pixels defined as infarct in the DE images. In addition, 89 +/- 5% of the pixels defined as infarct in the clustered images were also defined as infarct in DE images. The Bland-Altman results show no bias between the two methods in identifying MI. CONCLUSION: The proposed technique allows for objectively identifying divergent heart tissues, which would be potentially important for clinical decision-making in patients with MI.
Resumo:
Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.
Resumo:
DnaSP is a software package for the analysis of DNA polymorphism data. Present version introduces several new modules and features which, among other options allow: (1) handling big data sets (~5 Mb per sequence); (2) conducting a large number of coalescent-based tests by Monte Carlo computer simulations; (3) extensive analyses of the genetic differentiation and gene flow among populations; (4) analysing the evolutionary pattern of preferred and unpreferred codons; (5) generating graphical outputs for an easy visualization of results. Availability: The software package, including complete documentation and examples, is freely available to academic users from: http://www.ub.es/dnasp
Resumo:
Three-dimensional imaging and quantification of myocardial function are essential steps in the evaluation of cardiac disease. We propose a tagged magnetic resonance imaging methodology called zHARP that encodes and automatically tracks myocardial displacement in three dimensions. Unlike other motion encoding techniques, zHARP encodes both in-plane and through-plane motion in a single image plane without affecting the acquisition speed. Postprocessing unravels this encoding in order to directly track the 3-D displacement of every point within the image plane throughout an entire image sequence. Experimental results include a phantom validation experiment, which compares zHARP to phase contrast imaging, and an in vivo study of a normal human volunteer. Results demonstrate that the simultaneous extraction of in-plane and through-plane displacements from tagged images is feasible.
Resumo:
At high magnetic field strengths (≥ 3T), the radiofrequency wavelength used in MRI is of the same order of magnitude of (or smaller than) the typical sample size, making transmit magnetic field (B1+) inhomogeneities more prominent. Methods such as radiofrequency-shimming and transmit SENSE have been proposed to mitigate these undesirable effects. A prerequisite for such approaches is an accurate and rapid characterization of the B1+ field in the organ of interest. In this work, a new phase-sensitive three-dimensional B1+-mapping technique is introduced that allows the acquisition of a 64 × 64 × 8 B1+-map in ≈ 20 s, yielding an accurate mapping of the relative B1+ with a 10-fold dynamic range (0.2-2 times the nominal B1+). Moreover, the predominant use of low flip angle excitations in the presented sequence minimizes specific absorption rate, which is an important asset for in vivo B1+-shimming procedures at high magnetic fields. The proposed methodology was validated in phantom experiments and demonstrated good results in phantom and human B1+-shimming using an 8-channel transmit-receive array.
Resumo:
This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.