964 resultados para Computational modelling by homology
Resumo:
This research provides a description of the process followed in order to assemble a "Social Accounting Matrix" for Spain corresponding to the year 2000 (SAMSP00). As argued in the paper, this process attempts to reconcile ESA95 conventions with requirements of applied general equilibrium modelling. Particularly, problems related to the level of aggregation of net taxation data, and to the valuation system used for expressing the monetary value of input-output transactions have deserved special attention. Since the adoption of ESA95 conventions, input-output transactions have been preferably valued at basic prices, which impose additional difficulties on modellers interested in computing applied general equilibrium models. This paper addresses these difficulties by developing a procedure that allows SAM-builders to change the valuation system of input-output transactions conveniently. In addition, this procedure produces new data related to net taxation information.
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.
Resumo:
The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.
Resumo:
The coverage and volume of geo-referenced datasets are extensive and incessantly¦growing. The systematic capture of geo-referenced information generates large volumes¦of spatio-temporal data to be analyzed. Clustering and visualization play a key¦role in the exploratory data analysis and the extraction of knowledge embedded in¦these data. However, new challenges in visualization and clustering are posed when¦dealing with the special characteristics of this data. For instance, its complex structures,¦large quantity of samples, variables involved in a temporal context, high dimensionality¦and large variability in cluster shapes.¦The central aim of my thesis is to propose new algorithms and methodologies for¦clustering and visualization, in order to assist the knowledge extraction from spatiotemporal¦geo-referenced data, thus improving making decision processes.¦I present two original algorithms, one for clustering: the Fuzzy Growing Hierarchical¦Self-Organizing Networks (FGHSON), and the second for exploratory visual data analysis:¦the Tree-structured Self-organizing Maps Component Planes. In addition, I present¦methodologies that combined with FGHSON and the Tree-structured SOM Component¦Planes allow the integration of space and time seamlessly and simultaneously in¦order to extract knowledge embedded in a temporal context.¦The originality of the FGHSON lies in its capability to reflect the underlying structure¦of a dataset in a hierarchical fuzzy way. A hierarchical fuzzy representation of¦clusters is crucial when data include complex structures with large variability of cluster¦shapes, variances, densities and number of clusters. The most important characteristics¦of the FGHSON include: (1) It does not require an a-priori setup of the number¦of clusters. (2) The algorithm executes several self-organizing processes in parallel.¦Hence, when dealing with large datasets the processes can be distributed reducing the¦computational cost. (3) Only three parameters are necessary to set up the algorithm.¦In the case of the Tree-structured SOM Component Planes, the novelty of this algorithm¦lies in its ability to create a structure that allows the visual exploratory data analysis¦of large high-dimensional datasets. This algorithm creates a hierarchical structure¦of Self-Organizing Map Component Planes, arranging similar variables' projections in¦the same branches of the tree. Hence, similarities on variables' behavior can be easily¦detected (e.g. local correlations, maximal and minimal values and outliers).¦Both FGHSON and the Tree-structured SOM Component Planes were applied in¦several agroecological problems proving to be very efficient in the exploratory analysis¦and clustering of spatio-temporal datasets.¦In this thesis I also tested three soft competitive learning algorithms. Two of them¦well-known non supervised soft competitive algorithms, namely the Self-Organizing¦Maps (SOMs) and the Growing Hierarchical Self-Organizing Maps (GHSOMs); and the¦third was our original contribution, the FGHSON. Although the algorithms presented¦here have been used in several areas, to my knowledge there is not any work applying¦and comparing the performance of those techniques when dealing with spatiotemporal¦geospatial data, as it is presented in this thesis.¦I propose original methodologies to explore spatio-temporal geo-referenced datasets¦through time. Our approach uses time windows to capture temporal similarities and¦variations by using the FGHSON clustering algorithm. The developed methodologies¦are used in two case studies. In the first, the objective was to find similar agroecozones¦through time and in the second one it was to find similar environmental patterns¦shifted in time.¦Several results presented in this thesis have led to new contributions to agroecological¦knowledge, for instance, in sugar cane, and blackberry production.¦Finally, in the framework of this thesis we developed several software tools: (1)¦a Matlab toolbox that implements the FGHSON algorithm, and (2) a program called¦BIS (Bio-inspired Identification of Similar agroecozones) an interactive graphical user¦interface tool which integrates the FGHSON algorithm with Google Earth in order to¦show zones with similar agroecological characteristics.
Resumo:
In this paper we describe the results of a simulation study performed to elucidate the robustness of the Lindstrom and Bates (1990) approximation method under non-normality of the residuals, under different situations. Concerning the fixed effects, the observed coverage probabilities and the true bias and mean square error values, show that some aspects of this inferential approach are not completely reliable. When the true distribution of the residuals is asymmetrical, the true coverage is markedly lower than the nominal one. The best results are obtained for the skew normal distribution, and not for the normal distribution. On the other hand, the results are partially reversed concerning the random effects. Soybean genotypes data are used to illustrate the methods and to motivate the simulation scenarios
Resumo:
Proteins belonging to the CAP superfamily are present in all kingdoms of life and have been implicated in different physiological processes. Their molecular mode of action, however, is poorly understood. Saccharomyces cerevisiae expresses three members of this superfamily, pathogen-related yeast (Pry)1, -2, and -3. We have recently shown that Pry function is required for the secretion of cholesteryl acetate and that Pry proteins bind cholesterol and cholesteryl acetate, suggesting that CAP superfamily members may generally act to bind sterols or related small hydrophobic compounds. Here, we analyzed the mode of sterol binding by Pry1. Computational modeling indicates that ligand binding could occur through displacement of a relatively poorly conserved flexible loop, which in some CAP family members displays homology to the caveolin-binding motif. Point mutations within this motif abrogated export of cholesteryl acetate but did not affect binding of cholesterol. Mutations of residues located outside the caveolin-binding motif, or mutations in highly conserved putative catalytic residues had no effect on export of cholesteryl acetate or on lipid binding. These results indicate that the caveolin-binding motif of Pry1, and possibly of other CAP family members, is crucial for selective lipid binding and that lipid binding may occur through displacement of the loop containing this motif.
Resumo:
A novel member of the tumor necrosis factor (TNF) receptor family, designated TRAMP, has been identified. The structural organization of the 393 amino acid long human TRAMP is most homologous to TNF receptor 1. TRAMP is abundantly expressed on thymocytes and lymphocytes. Its extracellular domain is composed of four cysteine-rich domains, and the cytoplasmic region contains a death domain known to signal apoptosis. Overexpression of TRAMP leads to two major responses, NF-kappaB activation and apoptosis. TRAMP-induced cell death is inhibited by an inhibitor of ICE-like proteases, but not by Bcl-2. In addition, TRAMP does not appear to interact with any of the known apoptosis-inducing ligands of the TNF family.
Resumo:
The proportion of population living in or around cites is more important than ever. Urban sprawl and car dependence have taken over the pedestrian-friendly compact city. Environmental problems like air pollution, land waste or noise, and health problems are the result of this still continuing process. The urban planners have to find solutions to these complex problems, and at the same time insure the economic performance of the city and its surroundings. At the same time, an increasing quantity of socio-economic and environmental data is acquired. In order to get a better understanding of the processes and phenomena taking place in the complex urban environment, these data should be analysed. Numerous methods for modelling and simulating such a system exist and are still under development and can be exploited by the urban geographers for improving our understanding of the urban metabolism. Modern and innovative visualisation techniques help in communicating the results of such models and simulations. This thesis covers several methods for analysis, modelling, simulation and visualisation of problems related to urban geography. The analysis of high dimensional socio-economic data using artificial neural network techniques, especially self-organising maps, is showed using two examples at different scales. The problem of spatiotemporal modelling and data representation is treated and some possible solutions are shown. The simulation of urban dynamics and more specifically the traffic due to commuting to work is illustrated using multi-agent micro-simulation techniques. A section on visualisation methods presents cartograms for transforming the geographic space into a feature space, and the distance circle map, a centre-based map representation particularly useful for urban agglomerations. Some issues on the importance of scale in urban analysis and clustering of urban phenomena are exposed. A new approach on how to define urban areas at different scales is developed, and the link with percolation theory established. Fractal statistics, especially the lacunarity measure, and scale laws are used for characterising urban clusters. In a last section, the population evolution is modelled using a model close to the well-established gravity model. The work covers quite a wide range of methods useful in urban geography. Methods should still be developed further and at the same time find their way into the daily work and decision process of urban planners. La part de personnes vivant dans une région urbaine est plus élevé que jamais et continue à croître. L'étalement urbain et la dépendance automobile ont supplanté la ville compacte adaptée aux piétons. La pollution de l'air, le gaspillage du sol, le bruit, et des problèmes de santé pour les habitants en sont la conséquence. Les urbanistes doivent trouver, ensemble avec toute la société, des solutions à ces problèmes complexes. En même temps, il faut assurer la performance économique de la ville et de sa région. Actuellement, une quantité grandissante de données socio-économiques et environnementales est récoltée. Pour mieux comprendre les processus et phénomènes du système complexe "ville", ces données doivent être traitées et analysées. Des nombreuses méthodes pour modéliser et simuler un tel système existent et sont continuellement en développement. Elles peuvent être exploitées par le géographe urbain pour améliorer sa connaissance du métabolisme urbain. Des techniques modernes et innovatrices de visualisation aident dans la communication des résultats de tels modèles et simulations. Cette thèse décrit plusieurs méthodes permettant d'analyser, de modéliser, de simuler et de visualiser des phénomènes urbains. L'analyse de données socio-économiques à très haute dimension à l'aide de réseaux de neurones artificiels, notamment des cartes auto-organisatrices, est montré à travers deux exemples aux échelles différentes. Le problème de modélisation spatio-temporelle et de représentation des données est discuté et quelques ébauches de solutions esquissées. La simulation de la dynamique urbaine, et plus spécifiquement du trafic automobile engendré par les pendulaires est illustrée à l'aide d'une simulation multi-agents. Une section sur les méthodes de visualisation montre des cartes en anamorphoses permettant de transformer l'espace géographique en espace fonctionnel. Un autre type de carte, les cartes circulaires, est présenté. Ce type de carte est particulièrement utile pour les agglomérations urbaines. Quelques questions liées à l'importance de l'échelle dans l'analyse urbaine sont également discutées. Une nouvelle approche pour définir des clusters urbains à des échelles différentes est développée, et le lien avec la théorie de la percolation est établi. Des statistiques fractales, notamment la lacunarité, sont utilisées pour caractériser ces clusters urbains. L'évolution de la population est modélisée à l'aide d'un modèle proche du modèle gravitaire bien connu. Le travail couvre une large panoplie de méthodes utiles en géographie urbaine. Toutefois, il est toujours nécessaire de développer plus loin ces méthodes et en même temps, elles doivent trouver leur chemin dans la vie quotidienne des urbanistes et planificateurs.
Resumo:
The complex relationship between structural and functional connectivity, as measured by noninvasive imaging of the human brain, poses many unresolved challenges and open questions. Here, we apply analytic measures of network communication to the structural connectivity of the human brain and explore the capacity of these measures to predict resting-state functional connectivity across three independently acquired datasets. We focus on the layout of shortest paths across the network and on two communication measures-search information and path transitivity-which account for how these paths are embedded in the rest of the network. Search information is an existing measure of information needed to access or trace shortest paths; we introduce path transitivity to measure the density of local detours along the shortest path. We find that both search information and path transitivity predict the strength of functional connectivity among both connected and unconnected node pairs. They do so at levels that match or significantly exceed path length measures, Euclidean distance, as well as computational models of neural dynamics. This capacity suggests that dynamic couplings due to interactions among neural elements in brain networks are substantially influenced by the broader network context adjacent to the shortest communication pathways.
Resumo:
Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states
Resumo:
Summary Ecotones are sensitive to change because they contain high numbers of species living at the margin of their environmental tolerance. This is equally true of tree-lines, which are determined by attitudinal or latitudinal temperature gradients. In the current context of climate change, they are expected to undergo modifications in position, tree biomass and possibly species composition. Attitudinal and latitudinal tree-lines differ mainly in the steepness of the underlying temperature gradient: distances are larger at latitudinal tree-lines, which could have an impact on the ability of tree species to migrate in response to climate change. Aside from temperature, tree-lines are also affected on a more local level by pressure from human activities. These are also changing as a consequence of modifications in our societies and may interact with the effects of climate change. Forest dynamics models are often used for climate change simulations because of their mechanistic processes. The spatially-explicit model TreeMig was used as a base to develop a model specifically tuned for the northern European and Alpine tree-line ecotones. For the latter, a module for land-use change processes was also added. The temperature response parameters for the species in the model were first calibrated by means of tree-ring data from various species and sites at both tree-lines. This improved the growth response function in the model, but also lead to the conclusion that regeneration is probably more important than growth for controlling tree-line position and species' distributions. The second step was to implement the module for abandonment of agricultural land in the Alps, based on an existing spatial statistical model. The sensitivity of its most important variables was tested and the model's performance compared to other modelling approaches. The probability that agricultural land would be abandoned was strongly influenced by the distance from the nearest forest and the slope, bath of which are proxies for cultivation costs. When applied to a case study area, the resulting model, named TreeMig-LAb, gave the most realistic results. These were consistent with observed consequences of land-abandonment such as the expansion of the existing forest and closing up of gaps. This new model was then applied in two case study areas, one in the Swiss Alps and one in Finnish Lapland, under a variety of climate change scenarios. These were based on forecasts of temperature change over the next century by the IPCC and the HadCM3 climate model (ΔT: +1.3, +3.5 and +5.6 °C) and included a post-change stabilisation period of 300 years. The results showed radical disruptions at both tree-lines. With the most conservative climate change scenario, species' distributions simply shifted, but it took several centuries reach a new equilibrium. With the more extreme scenarios, some species disappeared from our study areas (e.g. Pinus cembra in the Alps) or dwindled to very low numbers, as they ran out of land into which they could migrate. The most striking result was the lag in the response of most species, independently from the climate change scenario or tree-line type considered. Finally, a statistical model of the effect of reindeer (Rangifer tarandus) browsing on the growth of Pinus sylvestris was developed, as a first step towards implementing human impacts at the boreal tree-line. The expected effect was an indirect one, as reindeer deplete the ground lichen cover, thought to protect the trees against adverse climate conditions. The model showed a small but significant effect of browsing, but as the link with the underlying climate variables was unclear and the model was not spatial, it was not usable as such. Developing the TreeMig-LAb model allowed to: a) establish a method for deriving species' parameters for the growth equation from tree-rings, b) highlight the importance of regeneration in determining tree-line position and species' distributions and c) improve the integration of social sciences into landscape modelling. Applying the model at the Alpine and northern European tree-lines under different climate change scenarios showed that with most forecasted levels of temperature increase, tree-lines would suffer major disruptions, with shifts in distributions and potential extinction of some tree-line species. However, these responses showed strong lags, so these effects would not become apparent before decades and could take centuries to stabilise. Résumé Les écotones son sensibles au changement en raison du nombre élevé d'espèces qui y vivent à la limite de leur tolérance environnementale. Ceci s'applique également aux limites des arbres définies par les gradients de température altitudinaux et latitudinaux. Dans le contexte actuel de changement climatique, on s'attend à ce qu'elles subissent des modifications de leur position, de la biomasse des arbres et éventuellement des essences qui les composent. Les limites altitudinales et latitudinales diffèrent essentiellement au niveau de la pente des gradients de température qui les sous-tendent les distance sont plus grandes pour les limites latitudinales, ce qui pourrait avoir un impact sur la capacité des espèces à migrer en réponse au changement climatique. En sus de la température, la limite des arbres est aussi influencée à un niveau plus local par les pressions dues aux activités humaines. Celles-ci sont aussi en mutation suite aux changements dans nos sociétés et peuvent interagir avec les effets du changement climatique. Les modèles de dynamique forestière sont souvent utilisés pour simuler les effets du changement climatique, car ils sont basés sur la modélisation de processus. Le modèle spatialement explicite TreeMig a été utilisé comme base pour développer un modèle spécialement adapté pour la limite des arbres en Europe du Nord et dans les Alpes. Pour cette dernière, un module servant à simuler des changements d'utilisation du sol a également été ajouté. Tout d'abord, les paramètres de la courbe de réponse à la température pour les espèces inclues dans le modèle ont été calibrées au moyen de données dendrochronologiques pour diverses espèces et divers sites des deux écotones. Ceci a permis d'améliorer la courbe de croissance du modèle, mais a également permis de conclure que la régénération est probablement plus déterminante que la croissance en ce qui concerne la position de la limite des arbres et la distribution des espèces. La seconde étape consistait à implémenter le module d'abandon du terrain agricole dans les Alpes, basé sur un modèle statistique spatial existant. La sensibilité des variables les plus importantes du modèle a été testée et la performance de ce dernier comparée à d'autres approches de modélisation. La probabilité qu'un terrain soit abandonné était fortement influencée par la distance à la forêt la plus proche et par la pente, qui sont tous deux des substituts pour les coûts liés à la mise en culture. Lors de l'application en situation réelle, le nouveau modèle, baptisé TreeMig-LAb, a donné les résultats les plus réalistes. Ceux-ci étaient comparables aux conséquences déjà observées de l'abandon de terrains agricoles, telles que l'expansion des forêts existantes et la fermeture des clairières. Ce nouveau modèle a ensuite été mis en application dans deux zones d'étude, l'une dans les Alpes suisses et l'autre en Laponie finlandaise, avec divers scénarios de changement climatique. Ces derniers étaient basés sur les prévisions de changement de température pour le siècle prochain établies par l'IPCC et le modèle climatique HadCM3 (ΔT: +1.3, +3.5 et +5.6 °C) et comprenaient une période de stabilisation post-changement climatique de 300 ans. Les résultats ont montré des perturbations majeures dans les deux types de limites de arbres. Avec le scénario de changement climatique le moins extrême, les distributions respectives des espèces ont subi un simple glissement, mais il a fallu plusieurs siècles pour qu'elles atteignent un nouvel équilibre. Avec les autres scénarios, certaines espèces ont disparu de la zone d'étude (p. ex. Pinus cembra dans les Alpes) ou ont vu leur population diminuer parce qu'il n'y avait plus assez de terrains disponibles dans lesquels elles puissent migrer. Le résultat le plus frappant a été le temps de latence dans la réponse de la plupart des espèces, indépendamment du scénario de changement climatique utilisé ou du type de limite des arbres. Finalement, un modèle statistique de l'effet de l'abroutissement par les rennes (Rangifer tarandus) sur la croissance de Pinus sylvestris a été développé, comme première étape en vue de l'implémentation des impacts humains sur la limite boréale des arbres. L'effet attendu était indirect, puisque les rennes réduisent la couverture de lichen sur le sol, dont on attend un effet protecteur contre les rigueurs climatiques. Le modèle a mis en évidence un effet modeste mais significatif, mais étant donné que le lien avec les variables climatiques sous jacentes était peu clair et que le modèle n'était pas appliqué dans l'espace, il n'était pas utilisable tel quel. Le développement du modèle TreeMig-LAb a permis : a) d'établir une méthode pour déduire les paramètres spécifiques de l'équation de croissance ä partir de données dendrochronologiques, b) de mettre en évidence l'importance de la régénération dans la position de la limite des arbres et la distribution des espèces et c) d'améliorer l'intégration des sciences sociales dans les modèles de paysage. L'application du modèle aux limites alpines et nord-européennes des arbres sous différents scénarios de changement climatique a montré qu'avec la plupart des niveaux d'augmentation de température prévus, la limite des arbres subirait des perturbations majeures, avec des glissements d'aires de répartition et l'extinction potentielle de certaines espèces. Cependant, ces réponses ont montré des temps de latence importants, si bien que ces effets ne seraient pas visibles avant des décennies et pourraient mettre plusieurs siècles à se stabiliser.
Resumo:
A haplotype is an m-long binary vector. The XOR-genotype of two haplotypes is the m-vector of their coordinate-wise XOR. We study the following problem: Given a set of XOR-genotypes, reconstruct their haplotypes so that the set of resulting haplotypes can be mapped onto a perfect phylogeny (PP) tree. The question is motivated by studying population evolution in human genetics, and is a variant of the perfect phylogeny haplotyping problem that has received intensive attention recently. Unlike the latter problem, in which the input is "full" genotypes, here we assume less informative input, and so may be more economical to obtain experimentally. Building on ideas of Gusfield, we show how to solve the problem in polynomial time, by a reduction to the graph realization problem. The actual haplotypes are not uniquely determined by that tree they map onto, and the tree itself may or may not be unique. We show that tree uniqueness implies uniquely determined haplotypes, up to inherent degrees of freedom, and give a sufficient condition for the uniqueness. To actually determine the haplotypes given the tree, additional information is necessary. We show that two or three full genotypes suffice to reconstruct all the haplotypes, and present a linear algorithm for identifying those genotypes.
Resumo:
The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.
Resumo:
Double-strand breaks (DSBs) in DNA are caused by ionizing radiation. These chromosomal breaks can kill the cell unless repaired efficiently, and inefficient or inappropriate repair can lead to mutation, gene translocation and cancer. Two proteins that participate in the repair of DSBs are Rad52 and Ku: in lower eukaryotes such as yeast, DSBs are repaired by Rad52-dependent homologous recombination, whereas vertebrates repair DSBs primarily by Ku-dependent non-homologous end-joining. The contribution of homologous recombination to vertebrate DSB repair, however, is important. Biochemical studies indicate that Ku binds to DNA ends and facilitates end-joining. Here we show that human Rad52, like Ku, binds directly to DSBs, protects them from exonuclease attack and facilitates end-to-end interactions. A model for repair is proposed in which either Ku or Rad52 binds the DSB. Ku directs DSBs into the non-homologous end-joining repair pathway, whereas Rad52 initiates repair by homologous recombination. Ku and Rad52, therefore, direct entry into alternative pathways for the repair of DNA breaks.
Resumo:
Aims: To assess the potential distribution of an obligate seeder and active pyrophyte, Cistus salviifolius, a vulnerable species in the Swiss Red List; to derive scenarios by changing the fire return interval; and to discuss the results from a conservation perspective. A more general aim is to assess the impact of fire as a natural factor influencing the vegetation of the southern slopes of the Alps. Locations: Alps, southern Switzerland. Methods: Presence-absence data to fit the model were obtained from the most recent field mapping of C. salviifolius. The quantitative environmental predictors used in this study include topographic, climatic and disturbance (fire) predictors. Models were fitted by logistic regression and evaluated by jackknife and bootstrap approaches. Changes in fire regime were simulated by increasing the time-return interval of fire (simulating longer periods without fire). Two scenarios were considered: no fire in the past 15 years; or in the past 35 years. Results: Rock cover, slope, topographic position, potential evapotranspiration and time elapsed since the last fire were selected in the final model. The Nagelkerke R-2 of the model for C. salviifolius was 0.57 and the Jackknife area under the curve evaluation was 0.89. The bootstrap evaluation revealed model robustness. By increasing the return interval of fire by either up to 15 years, or 35 years, the modelled C. salviifolius population declined by 30-40%, respectively. Main conclusions: Although fire plays a significant role, topography and rock cover appear to be the most important predictors, suggesting that the distribution of C. salviifolius in the southern Swiss Alps is closely related to the availability of supposedly competition-free sites, such as emerging bedrock, ridge locations or steep slopes. Fire is more likely to play a secondary role in allowing C. salviifolius to extend its occurrence temporarily, by increasing germination rates and reducing the competition from surrounding vegetation. To maintain a viable dormant seed bank for C. salviifolius, conservation managers should consider carrying out vegetation clearing and managing wild fire propagation to reduce competition and ensure sufficient recruitment for this species.