976 resultados para Computational geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present some recent developments in automated computational modelling with an emphasis on solid mechanics applications. The automation process permits an abstract mathematical model of a physical problem to be translated into computer code rapidly and trivially, and can lead to computer code which is faster than hand-written and optimised code. Crucial to the approach is ensuring that mathematical abstractions inherent in the mathematical model are inherited by the software library. © Springer Science+Business Media B.V. 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid crystalline elastomers (LCEs) can undergo extremely large reversible shape changes when exposed to external stimuli, such as mechanical deformations, heating or illumination. The deformation of LCEs result from a combination of directional reorientation of the nematic director and entropic elasticity. In this paper, we study the energetics of initially flat, thin LCE membranes by stress driven reorientation of the nematic director. The energy functional used in the variational formulation includes contributions depending on the deformation gradient and the second gradient of the deformation. The deformation gradient models the in-plane stretching of the membrane. The second gradient regularises the non-convex membrane energy functional so that infinitely fine in-plane microstructures and infinitely fine out-of-plane membrane wrinkling are penalised. For a specific example, our computational results show that a non-developable surface can be generated from an initially flat sheet at cost of only energy terms resulting from the second gradients. That is, Gaussian curvature can be generated in LCE membranes without the cost of stretch energy in contrast to conventional materials. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of cast-iron tunnel segments used in London Underground tunnels was investigated using the 3-D finite element (FE) method. A numerical model of the structural details of cast-iron segmental joints such as bolts, panel and flanges was developed and its performance was validated against a set of full-scale tests. Using the verified model, the influence of structural features such as caulking groove and bolt pretension was examined for both rotational and shear loading conditions. Since such detailed modelling of bolts increases the computational time when a full scale segmental tunnel is analysed, it is proposed to replace the bolt model to a set of spring models. The parameters for the bolt-spring models, which consider the geometry and material properties of the bolt, are proposed. The performance of the combined bolt-spring and solid segmental models are evaluated against a more conventional shell-spring model. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photonic crystals are materials that are used to control or manipulate the propagation of light through a medium for a desired application. Common fabrication methods to prepare photonic crystals are both costly and intricate. However, through a cost-effective laser-induced photochemical patterning, one-dimensional responsive and tuneable photonic crystals can easily be fabricated. These structures act as optical transducers and respond to external stimuli. These photonic crystals are generally made of a responsive hydrogel that can host metallic nanoparticles in the form of arrays. The hydrogel-based photonic crystal has the capability to alter its periodicity in situ but also recover its initial geometrical dimensions, thereby rendering it fully reversible and reusable. Such responsive photonic crystals have applications in various responsive and tuneable optical devices. In this study, we fabricated a pH-sensitive photonic crystal sensor through photochemical patterning and demonstrated computational simulations of the sensor through a finite element modelling technique in order to analyse its optical properties on varying the pattern and characteristics of the nanoparticle arrays within the responsive hydrogel matrix. Both simulations and experimental results show the wavelength tuneability of the sensor with good agreement. Various factors, including nanoparticle size and distribution within the hydrogel-based responsive matrices that directly affect the performance of the sensors, are also studied computationally. © 2014 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous studies of transonic shock control bumps have often been either numerical or experimental. Comparisons between the two have been hampered by the limitations of either approach. The present work aims to bridge the gap between computational fluid dynamics and experiment by planning a joint approach from the outset. This enables high-quality validation data to be produced and ensures that the conclusions of either aspect of the study are directly relevant to the application. Experiments conducted with bumps mounted on the floor of a blowdown tunnel were modified to include an additional postshock adverse pressure gradient through the use of a diffuser as well as introducing boundary-layer suction ahead of the test section to enable the in-flow boundary layer to be manipulated. This has the advantage of being an inexpensive and highly repeatable method. Computations were performed on a standard airfoil model, with the flight conditions as free parameters. The experimental and computational setups were then tuned to produce baseline conditions that agree well, enabling confidence that the experimental conclusions are relevant. The methods are then applied to two different shock control bumps: a smoothly contoured bump, representative of previous studies, and a novel extended geometry featuring a continuously widening tail, which spans the wind-tunnel width at the rear of the bump. Comparison between the computational and experimental results for the contour bump showed good agreement both with respect to the flow structures and quantitative analysis of the boundary-layer parameters. It was seen that combining the experimental and numerical data could provide valuable insight into the flow physics, which would not generally be possible for a one-sided approach. The experiments and computational fluid dynamics were also seen to agree well for the extended bump geometry, providing evidence that, even though thebumpinteracts directly with the wind-tunnel walls, it was still possible to observe the key flow physics. The joint approach is thus suitable even for wider bump geometries. Copyright © 2013 by S. P. Colliss, H. Babinsky, K. Nubler, and T. Lutz. Published by the American Institute of Aeronautics and Astronautics, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-phase computational fluid dynamics modelling is used to investigate the magnitude of different contributions to the wet steam losses in a three-stage model low pressure steam turbine. The thermodynamic losses (due to irreversible heat transfer across a finite temperature difference) and the kinematic relaxation losses (due to the frictional drag of the drops) are evaluated directly from the computational fluid dynamics simulation using a concept based on entropy production rates. The braking losses (due to the impact of large drops on the rotor) are investigated by a separate numerical prediction. The simulations show that in the present case, the dominant effect is the thermodynamic loss that accounts for over 90% of the wetness losses and that both the thermodynamic and the kinematic relaxation losses depend on the droplet diameter. The numerical results are brought into context with the well-known Baumann correlation, and a comparison with available measurement data in the literature is given. The ability of the numerical approach to predict the main wetness losses is confirmed, which permits the use of computational fluid dynamics for further studies on wetness loss correlations. © IMechE 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Underground constructions in soft ground may lead to settlement damage to existing buildings. In The Netherlands the situation is particularly complex, because of the combination of soft soil, fragile pile foundations and brittle, unreinforced masonry façades. The tunnelling design process in urban areas requires a reliable risk damage assessment. In the engineering practice the current preliminary damage assessment is based on the limiting tensile strain method (LTSM). Essentially this is an uncoupled analysis, in which the building is modelled as an elastic beam subject to imposed Greenfield settlements and the induced tensile strains are compared with a limit value for the material. The soil-structure interaction is included only as a ratio between the soil and the building stiffness. In this paper, a coupled approach is evaluated. The soil-structure interaction in terms of normal and shear behaviour is represented by interface elements and a cracking model for masonry is included. This project aims to improve the existing damage classification system for masonry buildings subjected to tunnel-induced settlement, in order to evaluate the necessity of strengthening techniques or mitigation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motivated by the problem of learning a linear regression model whose parameter is a large fixed-rank non-symmetric matrix, we consider the optimization of a smooth cost function defined on the set of fixed-rank matrices. We adopt the geometric framework of optimization on Riemannian quotient manifolds. We study the underlying geometries of several well-known fixed-rank matrix factorizations and then exploit the Riemannian quotient geometry of the search space in the design of a class of gradient descent and trust-region algorithms. The proposed algorithms generalize our previous results on fixed-rank symmetric positive semidefinite matrices, apply to a broad range of applications, scale to high-dimensional problems, and confer a geometric basis to recent contributions on the learning of fixed-rank non-symmetric matrices. We make connections with existing algorithms in the context of low-rank matrix completion and discuss the usefulness of the proposed framework. Numerical experiments suggest that the proposed algorithms compete with state-of-the-art algorithms and that manifold optimization offers an effective and versatile framework for the design of machine learning algorithms that learn a fixed-rank matrix. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for multi-dimension signals processing, that is multi-weight neural network based on high dimensional geometry theory, is proposed. With this theory, the geometry algorithm for building the multi-weight neuron is mentioned. To illustrate the advantage of the novel approach, a Chinese speech emotion recognition experiment has been done. From this experiment, the human emotions are classified into 6 archetypal classes: fear, anger, happiness, sadness, surprise and disgust. And the amplitude, pitch frequency and formant are used as the feature parameters for speech emotion recognition. Compared with traditional GSVM model, the new method has its superiority. It is noted that this method has significant values for researches and applications henceforth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on learning problems from geometry perspective have attracted an ever increasing attention in machine learning, leaded by achievements on information geometry. This paper proposes a different geometrical learning from the perspective of high-dimensional descriptive geometry. Geometrical properties of high-dimensional structures underlying a set of samples are learned via successive projections from the higher dimension to the lower dimension until two-dimensional Euclidean plane, under guidance of the established properties and theorems in high-dimensional descriptive geometry. Specifically, we introduce a hyper sausage like geometry shape for learning samples and provides a geometrical learning algorithm for specifying the hyper sausage shapes, which is then applied to biomimetic pattern recognition. Experimental results are presented to show that the proposed approach outperforms three types of support vector machines with either a three degree polynomial kernel or a radial basis function kernel, especially in the cases of high-dimensional samples of a finite size. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In practical situations, the causes of image blurring are often undiscovered or difficult to get known. However, traditional methods usually assume the knowledge of the blur has been known prior to the restoring process, which are not practicable for blind image restoration. A new method proposed in this paper aims exactly at blind image restoration. The restoration process is transformed into a problem of point distribution analysis in high-dimensional space. Experiments have proved that the restoration could be achieved using this method without re-knowledge of the image blur. In addition, the algorithm guarantees to be convergent and has simple computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

地址: Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the light of descriptive geometry and notions in set theory, this paper re-defines the basic elements in space such as curve and surface and so on, presents some fundamental notions with respect to the point cover based on the High-dimension space (HDS) point covering theory, finally takes points from mapping part of speech signals to HDS, so as to analyze distribution information of these speech points in HDS, and various geometric covering objects for speech points and their relationship. Besides, this paper also proposes a new algorithm for speaker independent continuous digit speech recognition based on the HDS point dynamic searching theory without end-points detection and segmentation. First from the different digit syllables in real continuous digit speech, we establish the covering area in feature space for continuous speech. During recognition, we make use of the point covering dynamic searching theory in HDS to do recognition, and then get the satisfying recognized results. At last, compared to HMM (Hidden Markov models)-based method, from the development trend of the comparing results, as sample amount increasing, the difference of recognition rate between two methods will decrease slowly, while sample amount approaching to be very large, two recognition rates all close to 100% little by little. As seen from the results, the recognition rate of HDS point covering method is higher than that of in HMM (Hidden Markov models) based method, because, the point covering describes the morphological distribution for speech in HDS, whereas HMM-based method is only a probability distribution, whose accuracy is certainly inferior to point covering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a novel algorithm for removing facial makeup disturbances as a face detection preprocess based on high dimensional imaginal geometry is proposed. After simulation and practical application experiments, the algorithm is theoretically analyzed. Its apparent effect of removing facial makeup and the advantages of face detection with this pre-process over face detection without it are discussed. Furthermore, in our experiments with color images, the proposed algorithm even gives some surprises.