999 resultados para Composite micromechanics
Resumo:
A severe shortage of good quality donor cornea is now an international crisis in public health. Alternatives for donor tissue need to be urgently developed to meet the increasing demand for corneal transplantation. Hydrogels have been widely used as scaffolds for corneal tissue regeneration due to their large water content, similar to that of native tissue. However, these hydrogel scaffolds lack the fibrous structure that functions as a load-bearing component in the native tissue, resulting in poor mechanical performance. This work shows that mechanical properties of compliant hydrogels can be substantially enhanced with electrospun nanofiber reinforcement. Electrospun gelatin nanofibers were infiltrated with alginate hydrogels, yielding transparent fiber-reinforced hydrogels. Without prior crosslinking, electrospun gelatin nanofibers improved the tensile elastic modulus of the hydrogels from 78±19. kPa to 450±100. kPa. Stiffer hydrogels, with elastic modulus of 820±210. kPa, were obtained by crosslinking the gelatin fibers with carbodiimide hydrochloride in ethanol before the infiltration process, but at the expense of transparency. The developed fiber-reinforced hydrogels show great promise as mechanically robust scaffolds for corneal tissue engineering applications. © 2013 Elsevier Ltd.
Resumo:
Composite structures exhibit many different failure mechanisms, but attempts to model composite failure frequently make a priori assumptions about the mechanism by which failure will occur. Wang et al. [1] conducted compressive tests on four configurations of composite specimen manufactured with out-of-plane waviness created by ply-drop defects. There were significantly different failures for each case. Detailed finite element models of these experiments were developed which include competing failure mechanisms. The model predictions correlate well with experimental results-both qualitatively (location of failure and shape of failed specimen) and quantitatively (failure load). The models are used to identify the progression of failure during the compressive tests, determine the critical failure mechanism for each configuration, and investigate the effect of cohesive parameters upon specimen strength. This modelling approach which includes multiple competing failure mechanisms can be applied to predict failure in situations where the failure mechanism is not known in advance. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The quasi-static and dynamic responses of laminated beams of equal areal mass, made from monolithic CFRP and Ultra high molecular weight Polyethylene (UHMWPE), have been measured. The end-clamped beams were impacted at mid-span by metal foam projectiles to simulate localised blast loading. The effect of clamping geometry on the response was investigated by comparing the response of beams bolted into the supports with the response of beams whose ends were wrapped around the supports. The effect of laminate shear strength upon the static and dynamic responses was investigated by testing two grades of each of the CFRP and UHMWPE beams: (i) CFRP beams with a cured matrix and uncured matrix, and (ii) UHMWPE laminates with matrices of two different shear strengths. Quasi-static stretch-bend tests indicated that the load carrying capacity of the UHWMPE beams exceeds that of the CFRP beams, increases with diminishing shear strength of matrix, and increases when the ends are wrapped rather than through-bolted. The dynamic deformation mode of the beams is qualitatively different from that observed in the quasi-static stretch-bend tests. In the dynamic case, travelling hinges emanate from the impact location and propagate towards the supports; the beams finally fail by tensile fibre fracture at the supports. The UHMWPE beams outperform the CFRP beams in terms of a lower mid-span deflection for a given impulse, and a higher failure impulse. Also, the maximum attainable impulse increases with decreasing shear strength for both the UHMWPE and CFRP beams. The ranking of the beams for load carrying capacity in the quasi-static stretch-bend tests is identical to that for failure impulse in the impact tests. Thus, the static tests can be used to gauge the relative dynamic performances of the beams. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
The ballistic performance of clamped circular carbon fibre reinforced polymer (CFRP) and Ultra High Molecular Weight Polyethylene (UHMWPE) fibre composite plates of equal areal mass and 0/90 lay-up were measured and compared with that of monolithic 304 stainless steel plates. The effect of matrix shear strength upon the dynamic response was explored by testing: (i) CFRP plates with both a cured and uncured matrix and (ii) UHMWPE laminates with identical fibres but with two matrices of different shear strength. The response of these plates when subjected to mid-span, normal impact by a steel ball was measured via a dynamic high speed shadow moiré technique. Travelling hinges emanate from the impact location and travel towards the supports. The anisotropic nature of the composite plate results in the hinges travelling fastest along the fibre directions and this results in square-shaped moiré fringes in the 0/90 plates. Projectile penetration of the UHMWPE and the uncured CFRP plates occurs in a progressive manner, such that the number of failed plies increases with increasing velocity. The cured CFRP plate, of high matrix shear strength, fails by cone-crack formation at low velocities, and at higher velocities by a combination of cone-crack formation and communition of plies beneath the projectile. On an equal areal mass basis, the low shear strength UHMWPE plate has the highest ballistic limit followed by the high matrix shear strength UHMWPE plate, the uncured CFRP, the steel plate and finally the cured CFRP plate. We demonstrate that the high shear strength UHMWPE plate exhibits Cunniff-type ballistic limit scaling. However, the observed Cunniff velocity is significantly lower than that estimated from the laminate properties. The data presented here reveals that the Cunniff velocity is limited in its ability to characterise the ballistic performance of fibre composite plates as this velocity is independent of the shear properties of the composites: the ballistic limit of fibre composite plates increases with decreasing matrix shear strength for both CFRP and UHMWPE plates. © 2013 Elsevier Masson SAS. All rights reserved.
Resumo:
Sandwich panels with crushable foam cores have attracted significant interest for impulsive load mitigation. We describe a method for making a lightweight, energy absorbing, glass fiber composite sandwich structure and explore it is through thickness (out-of-plane) compressive response. The sandwich structure utilized corrugated composite cores constructed from delamination resistant 3D woven E-glass fiber textiles folded over triangular cross section prismatic closed cell, PVC foam inserts. The corrugated structure was stitched to 3D woven S2-glass fiber face sheets and infiltrated with a rubber toughened, impact resistant epoxy. The quasi-static compressive stress-strain response of the panels was experimentally investigated as a function of the strut width to length ratio and compared to micromechanical predictions. Slender struts failed by elastic (Euler) buckling which transitioned to plastic microbuckling as the strut aspect ratio increased. Good agreement was observed between experimental results and micromechanical predictions over the wide range of core densities investigated in the study.
Resumo:
Strategic planning can be an arduous and complex task; and, once a plan has been devised, it is often quite a challenge to effectively communicate the principal missions and key priorities to the array of different stakeholders. The communication challenge can be addressed through the application of a clearly and concisely designed visualisation of the strategic plan - to that end, this paper proposes the use of a roadmapping framework to structure a visual canvas. The canvas provides a template in the form of a single composite visual output that essentially allows a 'plan-on-a-page' to be generated. Such a visual representation provides a high-level depiction of the future context, end-state capabilities and the system-wide transitions needed to realise the strategic vision. To demonstrate this approach, an illustrative case study based on the Australian Government's Defence White Paper and the Royal Australian Navy's fleet plan will be presented. The visual plan plots the in-service upgrades for addressing the capability shortfalls and gaps in the Navy's fleet as it transitions from its current configuration to its future end-state vision. It also provides a visualisation of project timings in terms of the decision gates (approval, service release) and specific phases (proposal, contract, delivery) together with how these projects are rated against the key performance indicators relating to the technology acquisition process and associated management activities. © 2013 Taylor & Francis.
Resumo:
This paper describes first some of the recent performance checks on the high performance fibre-reinforced cementitious composite CARDIFRC and then its application to the retrofitting of damaged concrete beams. It is shown that an even distribution of fibres throughout the bulk of the material is crucial to its excellent fatigue performance and to the reduction in the autogenous shrinkage strains. The distribution of fibres in beams, cylinders and strips is examined using computerised tomography imaging and traditional image analysis. Thin strips of CARDIFRC are used to retrofit damaged concrete beams which are subjected to thermal cycling. It is shown that neither the load carrying capacity of the retrofitted beams nor the bond between retrofit strips and concrete deteriorates with thermal cycling. The load carrying capacity of retrofitted beams is predicted with a model based on fracture mechanics, and the predictions are shown to be in good agreement with test data. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
The residual strength of glass fibre reinforced vinyl-ester laminates with multiple holes was investigated through an experimental programme. Different types of structured hole patterns and hole densities were investigated and analysed using digital image correlation strain measuring technique. Three different failure modes could be observed when the hole patterns and the hole densities were a altered. These three failure modes were used as the foundation for a simple yet effective analytical model in order to predict the residual strength of damaged composite specimens. Finally, a number of laminates with randomly distributed holes were tested experimentally. The analytical model can predict the failure mode and failure strength of the experiments with sufficiently good fidelity. © 2010 Elsevier Ltd.
Resumo:
A novel corrugated composite core, referred to as a hierarchical corrugation, has been developed and tested experimentally. Hierarchical corrugations exhibit a range of different failure modes depending on the geometrical properties and the material properties of the structures. In order to understand the different failure modes the analytical strength model, developed in part 1 of this paper, was used to make collapse mechanism maps for the different corrugation configurations. If designed correctly, the hierarchical structures can have more than 7 times higher weight specific strength compared to its monolithic counter part. The difference in strength arises mainly from the increase in buckling resistance of the sandwich core members compared to the monolithic version. The highest difference in strength is seen for core configurations with low overall density. As the density of the core increases, the monolithic core members get stockier and more resistant to buckling and thus the benefits of the hierarchical structure reduces. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
An analytical model for the compressive and shear response of monolithic and hierarchical corrugated composite cores has been developed. The stiffness model considers the contribution in stiffness from the bending- and the shear deformations of the core members in addition to the stretching deformation. The strength model is based on the normal stress and shear stress distribution over each core member when subjected to a shear or compressive load condition. The strength model also accounts for initial imperfections. In part 1 of this series, the analytical model is described and the results are compared to finite element predictions. In part 2, the analytical model is compared to experimental results and the behaviour of the corrugated structures is investigated more thoroughly using failure mechanism maps. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.
Resumo:
Carbon fiber reinforced polymer (CFRP) composite sandwich panels with hybrid foam filled CFRP pyramidal lattice cores have been assembled from a carbon fiber braided net, 3D woven face sheets and various polymeric foams, and infused with an epoxy resin using a vacuum assisted resin transfer process. Sandwich panels with a fixed CFRP truss mass have been fabricated using a variety of closed cell polymer and syntactic foams, resulting in core densities ranging from 44-482kgm-3. The through thickness and in-plane shear modulus and strength of the cores increased with increasing foam density. The use of low compressive strength foams within the core was found to result in a significant reduction in the compressive strength contributed by the CFRP trusses. X-ray tomography led to the discovery that the trusses develop an elliptical cross-section shape during pressure assisted resin transfer. The ellipticity of the truss cross-sections increased, and the lattice contribution to the core strength decreased as the foam density was reduced. Micromechanical modeling was used to investigate the relationships between the mechanical properties and volume fractions of the core materials and truss topology of the hybrid core. The specific strength and moduli of the hybrid cores lay between those of the CFRP lattices and foams used to fabricate them. However, their volumetric and gravimetric energy absorptions significantly exceeded those of the materials from which they were fabricated. They compare favorably with other lightweight energy absorbing materials and structures. © 2013.