870 resultados para Combines
Resumo:
In this paper, we present a distributed computing framework for problems characterized by a highly irregular search tree, whereby no reliable workload prediction is available. The framework is based on a peer-to-peer computing environment and dynamic load balancing. The system allows for dynamic resource aggregation, does not depend on any specific meta-computing middleware and is suitable for large-scale, multi-domain, heterogeneous environments, such as computational Grids. Dynamic load balancing policies based on global statistics are known to provide optimal load balancing performance, while randomized techniques provide high scalability. The proposed method combines both advantages and adopts distributed job-pools and a randomized polling technique. The framework has been successfully adopted in a parallel search algorithm for subgraph mining and evaluated on a molecular compounds dataset. The parallel application has shown good calability and close-to linear speedup in a distributed network of workstations.
Resumo:
Four-dimensional variational data assimilation (4D-Var) combines the information from a time sequence of observations with the model dynamics and a background state to produce an analysis. In this paper, a new mathematical insight into the behaviour of 4D-Var is gained from an extension of concepts that are used to assess the qualitative information content of observations in satellite retrievals. It is shown that the 4D-Var analysis increments can be written as a linear combination of the singular vectors of a matrix which is a function of both the observational and the forecast model systems. This formulation is used to consider the filtering and interpolating aspects of 4D-Var using idealized case-studies based on a simple model of baroclinic instability. The results of the 4D-Var case-studies exhibit the reconstruction of the state in unobserved regions as a consequence of the interpolation of observations through time. The results also exhibit the filtering of components with small spatial scales that correspond to noise, and the filtering of structures in unobserved regions. The singular vector perspective gives a very clear view of this filtering and interpolating by the 4D-Var algorithm and shows that the appropriate specification of the a priori statistics is vital to extract the largest possible amount of useful information from the observations. Copyright © 2005 Royal Meteorological Society
Resumo:
Real-time rainfall monitoring in Africa is of great practical importance for operational applications in hydrology and agriculture. Satellite data have been used in this context for many years because of the lack of surface observations. This paper describes an improved artificial neural network algorithm for operational applications. The algorithm combines numerical weather model information with the satellite data. Using this algorithm, daily rainfall estimates were derived for 4 yr of the Ethiopian and Zambian main rainy seasons and were compared with two other algorithms-a multiple linear regression making use of the same information as that of the neural network and a satellite-only method. All algorithms were validated against rain gauge data. Overall, the neural network performs best, but the extent to which it does so depends on the calibration/validation protocol. The advantages of the neural network are most evident when calibration data are numerous and close in space and time to the validation data. This result emphasizes the importance of a real-time calibration system.
Resumo:
We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, easily administered and distributed vaccine pills and other bacterial therapeutics
Resumo:
In the past decade, a number of mechanistic, dynamic simulation models of several components of the dairy production system have become available. However their use has been limited due to the detailed technical knowledge and special software required to run them, and the lack of compatibility between models in predicting various metabolic processes in the animal. The first objective of the current study was to integrate the dynamic models of [Brit. J. Nutr. 72 (1994) 679] on rumen function, [J. Anim. Sci. 79 (2001) 1584] on methane production, [J. Anim. Sci. 80 (2002) 2481 on N partition, and a new model of P partition. The second objective was to construct a decision support system to analyse nutrient partition between animal and environment. The integrated model combines key environmental pollutants such as N, P and methane within a nutrient-based feed evaluation system. The model was run under different scenarios and the sensitivity of various parameters analysed. A comparison of predictions from the integrated model with the original simulation models showed an improvement in N excretion since the integrated model uses the dynamic model of [Brit. J. Nutr. 72 (1994) 6791 to predict microbial N, which was not represented in detail in the original model. The integrated model can be used to investigate the degree to which production and environmental objectives are antagonistic, and it may help to explain and understand the complex mechanisms involved at the ruminal and metabolic levels. A part of the integrated model outputs were the forms of N and P in excreta and methane, which can be used as indices of environmental pollution. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
We investigate the factors precipitating market entry where smallholders make decisions about participation (a discrete choice about whether to sell quantities of products) and supply (a continuous-valued choice about how much quantity to sell) in a cross-section of smallholders in Northern Luzon, Philippines, in a model that combines basic probit and Tobit ideas, is implemented using Bayesian methods, and generates precise estimates of the inputs required in order to effect entry among the non-participants. We estimate the total amounts of (cattle, buffalo, pig and chicken) livestock input required to effect entry and compare and contrast the alternative input requirements. To the extent that our smallholder sample may be representative of a wide and broader set of circumstances, our findings shed light on offsetting impacts of conflicting factors that complicate the roles for policy in the context of expanding the density of participation.
Resumo:
Biological emergencies such as the appearance of an exotic transboundary or emerging disease can become disasters. The question that faces Veterinary Services in developing countries is how to balance resources dedicated to active insurance measures, such as border control, surveillance, working with the governments of developing countries, and investing in improving veterinary knowledge and tools, with passive measures, such as contingency funds and vaccine banks. There is strong evidence that the animal health situation in developed countries has improved and is relatively stable. In addition, through trade with other countries, developing countries are becoming part of the international animal health system, the status of which is improving, though with occasional setbacks. However, despite these improvements, the risk of a possible biological disaster still remains, and has increased in recent times because of the threat of bioterrorism. This paper suggests that a model that combines decision tree analysis with epidemiology is required to identify critical points in food chains that should be strengthened to reduce the risk of emergencies and prevent emergencies from becoming disasters.
Resumo:
The development of effective methods for predicting the quality of three-dimensional (3D) models is fundamentally important for the success of tertiary structure (TS) prediction strategies. Since CASP7, the Quality Assessment (QA) category has existed to gauge the ability of various model quality assessment programs (MQAPs) at predicting the relative quality of individual 3D models. For the CASP8 experiment, automated predictions were submitted in the QA category using two methods from the ModFOLD server-ModFOLD version 1.1 and ModFOLDclust. ModFOLD version 1.1 is a single-model machine learning based method, which was used for automated predictions of global model quality (QMODE1). ModFOLDclust is a simple clustering based method, which was used for automated predictions of both global and local quality (QMODE2). In addition, manual predictions of model quality were made using ModFOLD version 2.0-an experimental method that combines the scores from ModFOLDclust and ModFOLD v1.1. Predictions from the ModFOLDclust method were the most successful of the three in terms of the global model quality, whilst the ModFOLD v1.1 method was comparable in performance to other single-model based methods. In addition, the ModFOLDclust method performed well at predicting the per-residue, or local, model quality scores. Predictions of the per-residue errors in our own 3D models, selected using the ModFOLD v2.0 method, were also the most accurate compared with those from other methods. All of the MQAPs described are publicly accessible via the ModFOLD server at: http://www.reading.ac.uk/bioinf/ModFOLD/. The methods are also freely available to download from: http://www.reading.ac.uk/bioinf/downloads/.
Resumo:
The genome of the plant-colonizing bacterium Pseudomonas fluorescens SBW25 harbors a subset of genes that are expressed specifically on plant surfaces. The function of these genes is central to the ecological success of SBW25, but their study poses significant challenges because no phenotype is discernable in vitro. Here, we describe a genetic strategy with general utility that combines suppressor analysis with IVET (SPyVET) and provides a means of identifying regulators of niche-specific genes. Central to this strategy are strains carrying operon fusions between plant environment-induced loci (EIL) and promoterless 'dapB. These strains are prototrophic in the plant environment but auxotrophic on laboratory minimal medium. Regulatory elements were identified by transposon mutagenesis and selection for prototrophs on minimal medium. Approximately 106 mutants were screened for each of 27 strains carrying 'dapB fusions to plant EIL and the insertion point for the transposon determined in approximately 2,000 putative regulator mutants. Regulators were functionally characterized and used to provide insight into EIL phenotypes. For one strain carrying a fusion to the cellulose-encoding wss operon, five different regulators were identified including a diguanylate cyclase, the flagella activator, FleQ, and alginate activator, AmrZ (AlgZ). Further rounds of suppressor analysis, possible by virtue of the SPyVET strategy, revealed an additional two regulators including the activator AlgR, and allowed the regulatory connections to be determined.
Resumo:
Background: Selecting the highest quality 3D model of a protein structure from a number of alternatives remains an important challenge in the field of structural bioinformatics. Many Model Quality Assessment Programs (MQAPs) have been developed which adopt various strategies in order to tackle this problem, ranging from the so called "true" MQAPs capable of producing a single energy score based on a single model, to methods which rely on structural comparisons of multiple models or additional information from meta-servers. However, it is clear that no current method can separate the highest accuracy models from the lowest consistently. In this paper, a number of the top performing MQAP methods are benchmarked in the context of the potential value that they add to protein fold recognition. Two novel methods are also described: ModSSEA, which based on the alignment of predicted secondary structure elements and ModFOLD which combines several true MQAP methods using an artificial neural network. Results: The ModSSEA method is found to be an effective model quality assessment program for ranking multiple models from many servers, however further accuracy can be gained by using the consensus approach of ModFOLD. The ModFOLD method is shown to significantly outperform the true MQAPs tested and is competitive with methods which make use of clustering or additional information from multiple servers. Several of the true MQAPs are also shown to add value to most individual fold recognition servers by improving model selection, when applied as a post filter in order to re-rank models. Conclusion: MQAPs should be benchmarked appropriately for the practical context in which they are intended to be used. Clustering based methods are the top performing MQAPs where many models are available from many servers; however, they often do not add value to individual fold recognition servers when limited models are available. Conversely, the true MQAP methods tested can often be used as effective post filters for re-ranking few models from individual fold recognition servers and further improvements can be achieved using a consensus of these methods.
Resumo:
We present here an indicator of soil quality that evaluates soil ecosystem services through a set of 5 subindicators, and further combines them into a single general Indicator of Soil Quality (GISQ). We used information derived from 54 properties commonly used to describe the multifaceted aspects of soil quality. The design and calculation of the indicators were based on sequences of multivariate analyses. Subindicators evaluated the physical quality, chemical fertility, organic matter stocks, aggregation and morphology of the upper 5 cm of soil and the biodiversity of soil macrofauna. A GISQ combined the different subindicators providing a global assessment of soil quality. Research was conducted in two hillside regions of Colombia and Nicaragua, with similar types of land use and socio-economic context. However, soil and climatic conditions differed significantly. In Nicaragua, soil quality was assessed at 61 points regularly distributed 200 m apart on a regular grid across the landscape. In Colombia, 8 plots representing different types of land use were arbitrarily chosen in the landscape and intensively sampled. Indicators that were designed in the Nicaragua site were further applied to the Colombian site to test for their applicability. In Nicaragua, coffee plantations, fallows, pastures and forest had the highest values of GISQ (1.00; 0.80; 0.78 and 0.77, respectively) while maize crops and eroded soils (0.19 and 0.10) had the lowest values. Examination of subindicator values allowed the separate evaluation of different aspects of soil quality: subindicators of organic matter, aggregation and morphology and biodiversity of macrofauna had the maximum values in coffee plantations (0.89; 0.72 and 0.56, respectively on average) while eroded soils had the lowest values for these indicators (0.10; 0.31 and 0.33, respectively). Indicator formulae derived from information gained at the Nicaraguan sites were not applicable to the Colombian situation and site-specific constants were calculated. This indicator allows the evaluation of soil quality and facilitates the identification of problem areas through the individual values of each subindicator. It allows monitoring of change through time and can guide the implementation of soil restoration technologies. Although GISQ formulae computed on a set of data were only valid at a regional scale, the methodology used to create these indices can be applied everywhere.
Resumo:
We investigate the impact of past climates on plant diversification by tracking the "footprint" of climate change on a phylogenetic tree. Diversity within the cosmopolitan carnivorous plant genus Drosera (Droseraceae) is focused within Mediterranean climate regions. We explore whether this diversity is temporally linked to Mediterranean-type climatic shifts of the mid-Miocene and whether climate preferences are conservative over phylogenetic timescales. Phyloclimatic modeling combines environmental niche (bioclimatic) modeling with phylogenetics in order to study evolutionary patterns in relation to climate change. We present the largest and most complete such example to date using Drosera. The bioclimatic models of extant species demonstrate clear phylogenetic patterns; this is particularly evident for the tuberous sundews from southwestern Australia (subgenus Ergaleium). We employ a method for establishing confidence intervals of node ages on a phylogeny using replicates from a Bayesian phylogenetic analysis. This chronogram shows that many clades, including subgenus Ergaleium and section Bryastrum, diversified during the establishment of the Mediterranean-type climate. Ancestral reconstructions of bioclimatic models demonstrate a pattern of preference for this climate type within these groups. Ancestral bioclimatic models are projected into palaeo-climate reconstructions for the time periods indicated by the chronogram. We present two such examples that each generate plausible estimates of ancestral lineage distribution, which are similar to their current distributions. This is the first study to attempt bioclimatic projections on evolutionary time scales. The sundews appear to have diversified in response to local climate development. Some groups are specialized for Mediterranean climates, others show wide-ranging generalism. This demonstrates that Phyloclimatic modeling could be repeated for other plant groups and is fundamental to the understanding of evolutionary responses to climate change.
Resumo:
We have developed a new method for the analysis of voids in proteins (defined as empty cavities not accessible to solvent). This method combines analysis of individual discrete voids with analysis of packing quality. While these are different aspects of the same effect, they have traditionally been analysed using different approaches. The method has been applied to the calculation of total void volume and maximum void size in a non-redundant set of protein domains and has been used to examine correlations between thermal stability and void size. The tumour-suppressor protein p53 has then been compared with the non-redundant data set to determine whether its low thermal stability results from poor packing. We found that p53 has average packing, but the detrimental effects of some previously unexplained mutations to p53 observed in cancer can be explained by the creation of unusually large voids. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Accelerated failure time models with a shared random component are described, and are used to evaluate the effect of explanatory factors and different transplant centres on survival times following kidney transplantation. Different combinations of the distribution of the random effects and baseline hazard function are considered and the fit of such models to the transplant data is critically assessed. A mixture model that combines short- and long-term components of a hazard function is then developed, which provides a more flexible model for the hazard function. The model can incorporate different explanatory variables and random effects in each component. The model is straightforward to fit using standard statistical software, and is shown to be a good fit to the transplant data. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
There is growing evidence that, rather than maximizing energy intake subject to constraints, many animals attempt to regulate intake of multiple nutrients independently. In the complex diets of animals such as herbivores, the consumption of nutritionally imbalanced foods is sometimes inevitable, forcing trade-offs between eating too much of nutrients present in the foods in relative excess against too little of those in deficit. Such situations are not adequately represented in existing formulations of foraging theory. Here we provide the necessary theory to fit this case, using an approach that combines state-space models of nutrition with Tilman's models of resource exploitation (Tilman 1982, Resource Competition and Community Structure, Princeton: Princeton University Press). Our approach was to construct a smooth fitness landscape over nutrient space, centred on a 'target' intake at which no fitness cost is incurred, and this leads to a natural classification of the simple possible fitness landscapes based on Taylor series approximations of landscape shape. We next examined how needs for multiple nutrients can be assessed experimentally using direct measures of animal performance as the common currency, so that the nutritional strategies of animals can be mapped on to the performance surface, including the position of regulated points of intake and points of nutrient balance when fed suboptimal foods. We surveyed published data and conducted an experiment to map out the performance landscape of a generalist leaf-feeding caterpillar, Spodoptera littoralis. (C) 2004 Tire Association for the Study of Animal Behaviour. Poblished by Elsevier Ltd. All rights reserved.