909 resultados para Combined Bending and Shear Actions
Resumo:
The low frequency vibrational spectrum of cluster beam deposited carbon films was studied by Brillouin light scattering. In thin films the values of both bulk modulus and shear modulus has been estimated from the shifts of surface phonon peaks. The values found indicate a mainly sp2 coordinated random network with low density. In thick films a bulk longitudinal phonon peak was detected in a spectral range compatible with the value of the index of refraction and of the elastic constants of thin films. High surface roughness, combined with a rather strong bulk central peak, prevented the observation of surface phonon features. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Expectations about the magnitude of impending pain exert a substantial effect on subsequent perception. However, the neural mechanisms that underlie the predictive processes that modulate pain are poorly understood. In a combined behavioral and high-density electrophysiological study we measured anticipatory neural responses to heat stimuli to determine how predictions of pain intensity, and certainty about those predictions, modulate brain activity and subjective pain ratings. Prior to receiving randomized laser heat stimuli at different intensities (low, medium or high) subjects (n=15) viewed cues that either accurately informed them of forthcoming intensity (certain expectation) or not (uncertain expectation). Pain ratings were biased towards prior expectations of either high or low intensity. Anticipatory neural responses increased with expectations of painful vs. non-painful heat intensity, suggesting the presence of neural responses that represent predicted heat stimulus intensity. These anticipatory responses also correlated with the amplitude of the Laser-Evoked Potential (LEP) response to painful stimuli when the intensity was predictable. Source analysis (LORETA) revealed that uncertainty about expected heat intensity involves an anticipatory cortical network commonly associated with attention (left dorsolateral prefrontal, posterior cingulate and bilateral inferior parietal cortices). Relative certainty, however, involves cortical areas previously associated with semantic and prospective memory (left inferior frontal and inferior temporal cortex, and right anterior prefrontal cortex). This suggests that biasing of pain reports and LEPs by expectation involves temporally precise activity in specific cortical networks.
Resumo:
The effects of turbulent Reynolds number, Ret, on the transport of scalar dissipation rate of reaction progress variable in the context of Reynolds averaged Navier-Stokes simulations have been analyzed using three-dimensional simplified chemistry-based direct numerical simulation (DNS) data of freely propagating turbulent premixed flames with different values of Ret. Scaling arguments have been used to explain the effects of Ret on the turbulent transport, scalar-turbulence interaction, and the combined reaction and molecular dissipation terms. Suitable modifications to the models for these terms have been proposed to account for Ret effects, and the model parameters include explicit Ret dependence. These expressions approach expected asymptotic limits for large values of Ret. However, turbulent Reynolds number Ret does not seem to have any major effects on the modeling of the term arising from density variation. Copyright © Taylor and Francis Group, LLC.
Resumo:
It is well known that accurate EGR control is paramount to controlling engine out emissions during steady state and transient operation of a diesel engine. The direct measurement of EGR is however non-trivial and especially difficult in engines with no external EGR control where the intake manifold CO2 levels can be measured more readily. This work studies the EGR behaviour in a medium duty diesel engine with a passive EGR rebreathing strategy for steady state and transient operation. High speed (response time ∼1ms) in-cylinder sampling using modified GDI valves is coupled with high frequency response analysers to measure the cyclic in-cylinder CO2, from which the EGR rate is deduced. It was found that controlling the EGR using the passive rebreathing strategy during certain combined speed and load transients is challenging, causing high smoke and NO emissions. The in-cylinder sampling method coupled with fast CO2 measurement (time constant ∼8ms) in the exhaust port gave insights about the EGR rate during these transients. The complex interaction of the manifold pressures, turbo-charger operation and trapped charge composition from the previous cycle simply can cause high dilution and therefore high smoke levels. The steady state variation of NO emissions with respect to EGR is also studied using a fast NO analyzer (time constant ∼2ms) in the exhaust port. Cyclic variation was found to be up to ±5% at some load conditions. © 2008 SAE International.
Resumo:
We present a combined analytical and numerical study of the early stages (sub-100-fs) of the nonequilibrium dynamics of photoexcited electrons in graphene. We employ the semiclassical Boltzmann equation with a collision integral that includes contributions from electron-electron (e-e) and electron-optical phonon interactions. Taking advantage of circular symmetry and employing the massless Dirac fermion (MDF) Hamiltonian, we are able to perform an essentially analytical study of the e-e contribution to the collision integral. This allows us to take particular care of subtle collinear scattering processes - processes in which incoming and outgoing momenta of the scattering particles lie on the same line - including carrier multiplication (CM) and Auger recombination (AR). These processes have a vanishing phase space for two-dimensional MDF bare bands. However, we argue that electron-lifetime effects, seen in experiments based on angle-resolved photoemission spectroscopy, provide a natural pathway to regularize this pathology, yielding a finite contribution due to CM and AR to the Coulomb collision integral. Finally, we discuss in detail the role of physics beyond the Fermi golden rule by including screening in the matrix element of the Coulomb interaction at the level of the random phase approximation (RPA), focusing in particular on the consequences of various approximations including static RPA screening, which maximizes the impact of CM and AR processes, and dynamical RPA screening, which completely suppresses them. © 2013 American Physical Society.
Resumo:
The vortical wake structure produced by a three-dimensional shock control bump (SCB) is thought to be useful for controlling transonic buffet on airfoils. However, at present the vorticity produced is relatively weak and the production mechanism is not well understood. Using a combined experimental and computational approach, a preliminary investigation on the wake vorticity for different bump geometries has been carried out. The structure of the wake for on and off-design conditions are considered, and the effects on the downstream boundary layer demonstrated. Three main vortical structures are observed: a primary vortex pair, weak inter-bump vortices and shear flow in the lambda-shock region. The effect of pressure gradients on vortex strength is examined and it is found that spanwise pressure gradients on the front section of the bump are the most significant parameter influencing vortex strength. © 2013 by S.P. Colliss et al.
Resumo:
This paper examines the sources of uncertainly in models used to predict vibration from underground railways. It will become clear from this presentation that by varying parameters by a small amount, consistent with uncertainties in measured data, the predicted vibration levels vary significantly, often by more than 10dB. This error cannot be forecast. Small changes made to soil parameters (Compressive and Shear Wave velocities and density), to slab bending stiffness and mass and to the measurement position give rise to changes in vibration levels of more than lOdB. So if 10dB prediction error results from small uncertainties in soil parameters and measurement position it cannot be sensible to rely on prediction models for accuracy better than 10dB. The presentation will demonstrate in real time the use of the new - and freely-available - PiP software for calculating vibration from railway tunnels in real time.
Resumo:
Heavy goods vehicles exhibit poor braking performance in emergency situations when compared to other vehicles. Part of the problem is caused by sluggish pneumatic brake actuators, which limit the control bandwidth of their antilock braking systems. In addition, heuristic control algorithms are used that do not achieve the maximum braking force throughout the stop. In this article, a novel braking system is introduced for pneumatically braked heavy goods vehicles. The conventional brake actuators are improved by placing high-bandwidth, binary-actuated valves directly on the brake chambers. A made-for-purpose valve is described. It achieves a switching delay of 3-4 ms in tests, which is an order of magnitude faster than solenoids in conventional anti-lock braking systems. The heuristic braking control algorithms are replaced with a wheel slip regulator based on sliding mode control. The combined actuator and slip controller are shown to reduce stopping distances on smooth and rough, high friction (μ = 0.9) surfaces by 10% and 27% respectively in hardware-in-the-loop tests compared with conventional ABS. On smooth and rough, low friction (μ = 0.2) surfaces, stopping distances are reduced by 23% and 25%, respectively. Moreover, the overall air reservoir size required on a heavy goods vehicle is governed by its air usage during an anti-lock braking stop on a low friction, smooth surface. The 37% reduction in air usage observed in hardware-in-the-loop tests on this surface therefore represents the potential reduction in reservoir size that could be achieved by the new system. © 2012 IMechE.
Resumo:
This work addresses the challenging problem of unconstrained 3D human pose estimation (HPE) from a novel perspective. Existing approaches struggle to operate in realistic applications, mainly due to their scene-dependent priors, such as background segmentation and multi-camera network, which restrict their use in unconstrained environments. We therfore present a framework which applies action detection and 2D pose estimation techniques to infer 3D poses in an unconstrained video. Action detection offers spatiotemporal priors to 3D human pose estimation by both recognising and localising actions in space-time. Instead of holistic features, e.g. silhouettes, we leverage the flexibility of deformable part model to detect 2D body parts as a feature to estimate 3D poses. A new unconstrained pose dataset has been collected to justify the feasibility of our method, which demonstrated promising results, significantly outperforming the relevant state-of-the-arts. © 2013 IEEE.
Resumo:
This study investigates the effect of thermal cycling on the performance of concrete beams retrofitted with CARDIFRC, a new class of high performance fiber-reinforced cement-based material that is compatible with concrete. Twenty four beams were subjected to 24 h thermal cycles between 25 and 90°C. One third of the beams were reinforced either in flexure only or in flexure and shear with conventional steel reinforcement and used as control specimens. The remaining sixteen beams were retrofitted with CARDIFRC strips to provide external flexural and/or shear strengthening. All beams were exposed to a varied number of 24 h thermal cycles ranging from 0 to 90 and were tested in four-point bending at room temperature. The tests indicated that the retrofitted members were stronger and stiffer than control beams, and more importantly, that their failure initiated in flexure without any signs of interfacial delamination cracking. The results of these tests are presented and compared to analytical predictions. The predictions show good correlation with the experimental results. © 2010 ASCE.
Resumo:
An analytical model for the compressive and shear response of monolithic and hierarchical corrugated composite cores has been developed. The stiffness model considers the contribution in stiffness from the bending- and the shear deformations of the core members in addition to the stretching deformation. The strength model is based on the normal stress and shear stress distribution over each core member when subjected to a shear or compressive load condition. The strength model also accounts for initial imperfections. In part 1 of this series, the analytical model is described and the results are compared to finite element predictions. In part 2, the analytical model is compared to experimental results and the behaviour of the corrugated structures is investigated more thoroughly using failure mechanism maps. © 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ba1.6Ca2.3Y1.1Fe5O13 is an Fe3+ oxide adopting a complex perovskite superstructure, which is an ordered intergrowth between the Ca2Fe2O5 and YBa2Fe3O8 structures featuring octahedral, square pyramidal, and tetrahedral B sites and three distinct A site environments. The distribution of A site cations was evaluated by combined neutron and X-ray powder diffraction. Consistent with the Fe3+ charge state, the material is an antiferromagnetic insulator with a Néel temperature of 480-485 °C and has a relatively low d.c. conductivity of 2.06 S cm-1 at 700 °C. The observed area specific resistance in symmetrical cell cathodes with the samarium-doped ceria electrolyte is 0.87 Ω cm2 at 700 °C, consistent with the square pyramidal Fe3+ layer favoring oxide ion formation and mobility in the oxygen reduction reaction. Density functional theory calculations reveal factors favoring the observed cation ordering and its influence on the electronic structure, in particular the frontier occupied and unoccupied electronic states. © 2010 American Chemical Society.
Resumo:
Hot-pressed laminates with a [0/90]48 lay-up, consisting of 83% by volume of ultra high molecular-weight polyethylene (UHMWPE) fibres, and 17% by volume of polyurethane (PU) matrix, were cut into cantilever beams and subjected to transverse end-loading. The collapse mechanisms were observed both visually and by X-ray scans. Short beams deform elastically and collapse plastically in longitudinal shear, with a shear strength comparable to that observed in double notch, interlaminar shear tests. In contrast, long cantilever beams deform in bending and collapse via a plastic hinge at the built-in end of the beam. The plastic hinge is formed by two wedge-shaped microbuckle zones that grow in size and in intensity with increasing hinge rotation. This new mode of microbuckling under macroscopic bending involves both elastic bending and shearing of the plies, and plastic shear of the interface between each ply. The double-wedge pattern contrasts with the more usual parallel-sided plastic microbuckle that occurs in uniaxial compression. Finite element simulations and analytical models give additional insight into the dominant material and geometric parameters that dictate the collapse response of the UHMWPE composite beam in bending. Detailed comparisons between the observed and predicted collapse responses are used in order to construct a constitutive model for laminated UHMWPE composites. © 2013 Elsevier Ltd.
Resumo:
The effects of single Cd2+ and Pb2+, and combined Cd2+ and Pb2+ on dehydrogenase activity and polysaccharide content of the substrate biofilms in the integrated vertical-flow constructed wetland (IVCW) were studied. Dehydrogenase activities decreased linearly with the increasing concentrations of Cd2+ and Pb2+ at different times (6, 24, 72, and 120 h). The activities at both 6 and 24 h were significantly higher than that at 72 and 120 h in the case of single and combined treatments. The single Cd2+ and Pb2+ treatments significantly inhibited dehydrogenase activities at concentrations in excess of 20 mu mol/L Cd2+ and 80 mu mol/L Pb2+, respectively. The inhibitory effect of Cd2+ was much greater than that of Pb2+. At the same time, the combined treatment of Cd2+ and Pb2+ Significantly inhibited dehydrogenase activities at all five concentrations studied and the lowest combined concentration was 1.25 mu mol/L Cd2+ and 5 mu mol/L Pb2+. A synergistic effect of Cd2+ and Pb2+ was observed. On the other hand, polysaccharide contents varied unpredictably with the increasing concentrations of Cd2+ and Pb2+ and extended experimental time. There were no significant statistical differences within the range of concentration and time studied, whether singly or in combination. These results implied that the effects of heavy metals on biofilms should be a concern for the operation and maintenance of constructed wetlands.
Resumo:
Phosphorus removal performance and a possible mechanism for the phosphorus removal from an eutrophic lake water were investigated using a medium-scale integrated vertical constructed wetland (combined vertical and reverse-vertical systems) from April, 11, 2001 to September, 28, 2004. Environmental factors affecting phosphorus removal and release profiles were monitored simultaneously under hydraulic loads from 400 to 2000 mm per day. The phosphorus removal rate varied with the environmental conditions. The removal rate for acidic influent water was superior to that for alkaline influent water. The substrate in the wetland chamber acted as a buffer to regulate the pH value of the water sample. As regards the water temperature, no significant differences were observed for the removal rate of total phosphorus (TP) and soluble reactive phosphorus (SRP) between low (lower than 15 degrees C) medium (16-25 degrees C) and high temperature (higher than 26 degrees C) conditions. Under a hydraulic load of 400 mm per day, the removal rate reached over 70%, the highest value achieved in this work. In addition, the highest hydraulic load of 2000 mm/d did not result in the lowest removal rate, as had been expected. After a two-year high hydraulic load test, the removal rate decreased significantly. Phosphorous release from the substrate was examined using a spatial sampling method. Depth profiles of total phosphorus and different states of phosphorus present in the substrate were recorded. This further study demonstrated that binding of phosphorus by iron and calcium might be another major factor in the removal and release of TP and SRP in this wetland system. The distribution of the speciated phosphorus showed that the amount of phosphorus captured in the substrate of the down-flow chamber was significantly higher than that captured in the up-flow chamber, suggesting that the up-flow chamber was the main source of phosphorus release in this constructed wetland.